-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRelationNetwork1.py
133 lines (107 loc) · 4.29 KB
/
RelationNetwork1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super().__init__()
# 收缩子模块
self.shrinkage = Shrinkage(out_channels, gap_size=1)
# 卷积、卷积、收缩
self.residual_function = nn.Sequential(
nn.BatchNorm1d(in_channels),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm1d(out_channels),
nn.ReLU(inplace=True),
nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
self.shrinkage
)
# 连接点
self.shortcut = nn.Sequential()
# 通过1*1卷积来统一维度
if stride != 1 :
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
)
def forward(self, x):
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
# 收缩子模块
class Shrinkage(nn.Module):
def __init__(self, channel, gap_size):
super(Shrinkage, self).__init__()
self.gap = nn.AdaptiveAvgPool1d(gap_size) # 实现GAP
self.fc = nn.Sequential( # 学习阈值的两层FC
nn.Linear(channel, channel),
nn.BatchNorm1d(channel),
nn.ReLU(inplace=True),
nn.Linear(channel, channel),
nn.Sigmoid(),
)
def forward(self, x):
x_raw = x # 原始值 x
x = torch.abs(x) # 取绝对值
x_abs = x
x = self.gap(x) # 全局平均池化
x = torch.flatten(x, 1) # 展开
# average = torch.mean(x, dim=1, keepdim=True)
average = x
x = self.fc(x) # 通过两层FC
x = torch.mul(average, x) # 与绝对值点乘
x = x.unsqueeze(2) # 增加两个维度,获得阈值向量
# 软阈值化
sub = x_abs - x
zeros = sub - sub
n_sub = torch.max(sub, zeros) # 缩放系数
x = torch.mul(torch.sign(x_raw), n_sub) # 对原始值x进行缩放
return x
class RSNet(nn.Module):
def __init__(self, block, num_block, num_classes=100):
super().__init__()
self.in_channels = 4
self.conv1 = nn.Sequential(
nn.Conv1d(2, 4, kernel_size=3, padding=1, stride=2,bias=False))
#we use a different inputsize than the original paper
#so conv2_x's stride is 1
self.conv2_x = self._make_layer(block, 4, 2)
self.conv3_x = self._make_layer(block, 8, 2)
self.conv4_x = self._make_layer(block, 16, 2)
self.bn = nn.BatchNorm1d(16)
self.relu = nn.ReLU(inplace=True)
self.avg_pool = nn.AdaptiveAvgPool1d(1)
# self.fc = nn.Linear(64 * block.expansion, 8)
self.fc2 = nn.Linear(16, 1)
def _make_layer(self, block, out_channels, stride):
"""make rsnet layers(by layer i didnt mean this 'layer' was the
same as a neuron netowork layer, ex. conv layer), one layer may
contain more than one residual shrinkage block
Args:
block: block type, basic block or bottle neck block
out_channels: output depth channel number of this layer
num_blocks: how many blocks per layer
stride: the stride of the first block of this layer
Return:
return a rsnet layer
"""
# we have num_block blocks per layer, the first block
# could be 1 or 2, other blocks would always be 1
layers = block(self.in_channels, out_channels, stride)
self.in_channels = out_channels
return nn.Sequential(layers)
def forward(self, x):
output = self.conv1(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
output = self.conv4_x(output)
output=self.bn(output)
output = self.relu(output)
output = self.avg_pool(output)
output = output.view(output.size(0), -1)
#output = self.fc(output)
output = self.fc2(output)
output = F.sigmoid(output)
return output
def rsnet():
""" return a RSNet 18 object
"""
return RSNet(BasicBlock, [2, 2, 2, 2])
#关系模块