diff --git a/pyzx/simplify.py b/pyzx/simplify.py index 52b75aed..a0cda7f8 100644 --- a/pyzx/simplify.py +++ b/pyzx/simplify.py @@ -407,8 +407,11 @@ def full_reduce_iter(g: BaseGraph[VT,ET]) -> Iterator[Tuple[BaseGraph[VT,ET],str ok = True yield g, f"pivot_gadget -> {step}" -def is_graph_like(g: BaseGraph[VT,ET]) -> bool: - """Checks if a ZX-diagram is graph-like.""" +def is_graph_like(g: BaseGraph[VT,ET], strict:bool=False) -> bool: + """Checks if a ZX-diagram is graph-like: + only contains Z-spiders which are connected by Hadamard edges. + If `strict` is True, then also checks that each boundary vertex is connected to a Z-spider, + and that each Z-spider is connected to at most one boundary.""" # checks that all spiders are Z-spiders for v in g.vertices(): @@ -431,18 +434,19 @@ def is_graph_like(g: BaseGraph[VT,ET]) -> bool: if g.connected(v, v): return False - # every I/O is connected to a Z-spider - bs = [v for v in g.vertices() if g.type(v) == VertexType.BOUNDARY] - for b in bs: - if g.vertex_degree(b) != 1 or g.type(list(g.neighbors(b))[0]) != VertexType.Z: - return False + if strict: + # every I/O is connected to a Z-spider + bs = [v for v in g.vertices() if g.type(v) == VertexType.BOUNDARY] + for b in bs: + if g.vertex_degree(b) != 1 or g.type(list(g.neighbors(b))[0]) != VertexType.Z: + return False - # every Z-spider is connected to at most one I/O - zs = [v for v in g.vertices() if g.type(v) == VertexType.Z] - for z in zs: - b_neighbors = [n for n in g.neighbors(z) if g.type(n) == VertexType.BOUNDARY] - if len(b_neighbors) > 1: - return False + # every Z-spider is connected to at most one I/O + zs = [v for v in g.vertices() if g.type(v) == VertexType.Z] + for z in zs: + b_neighbors = [n for n in g.neighbors(z) if g.type(n) == VertexType.BOUNDARY] + if len(b_neighbors) > 1: + return False return True @@ -510,7 +514,7 @@ def to_graph_like(g: BaseGraph[VT,ET]) -> None: g.add_edge((b,z),EdgeType.SIMPLE) g.add_edge((z,v),EdgeType.HADAMARD) - assert(is_graph_like(g)) + assert(is_graph_like(g,strict=True)) def to_clifford_normal_form_graph(g: BaseGraph[VT,ET]) -> None: """Converts a graph that is Clifford into the form described by the right-hand side of eq. (11) of