forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.sh
executable file
·216 lines (186 loc) · 7.42 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env bash
set -eou pipefail
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/librispeech
# You can find audio and transcripts for LibriSpeech in this path.
#
# - $dl_dir/libricss
# You can find audio and transcripts for LibriCSS in this path.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
#
# - $dl_dir/rirs_noises
# This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/.
#
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
vocab_size=500
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/librispeech,
# you can create a symlink
#
# ln -sfv /path/to/librispeech $dl_dir/librispeech
#
if [ ! -d $dl_dir/librispeech ]; then
lhotse download librispeech $dl_dir/librispeech
fi
# If you have pre-downloaded it to /path/to/libricss,
# you can create a symlink
#
# ln -sfv /path/to/libricss $dl_dir/libricss
#
if [ ! -d $dl_dir/libricss ]; then
lhotse download libricss $dl_dir/libricss
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
# If you have pre-downloaded it to /path/to/rirs_noises,
# you can create a symlink
#
# ln -sfv /path/to/rirs_noises $dl_dir/
#
if [ ! -d $dl_dir/rirs_noises ]; then
lhotse download rir-noise $dl_dir/rirs_noises
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriSpeech manifests"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/librispeech. We perform text normalization for the transcripts.
# NOTE: Alignments are required for this recipe.
mkdir -p data/manifests
log "This recipe uses mfa alignment for trimming"
if [ ! -d $dl_dir/libri_alignments/LibriSpeech ]; then
log "No alignment provided. please refer to ../../librispeech/ASR/add_alignments.sh \n \
for mfa alignments. Once you have downloaded and unzipped the .zip file containing \n \
all alignments, the folder should be renamed to libri_alignments and moved to your $dl_dir ."
exit 0
fi
lhotse prepare librispeech -p train-clean-100 -p train-clean-360 -p train-other-500 -p dev-clean \
-j 4 --alignments-dir $dl_dir/libri_alignments/LibriSpeech $dl_dir/librispeech data/manifests/
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare LibriCSS manifests"
# We assume that you have downloaded the LibriCSS corpus
# to $dl_dir/libricss. We perform text normalization for the transcripts.
mkdir -p data/manifests
for mic in sdm ihm-mix; do
lhotse prepare libricss --type $mic --segmented $dl_dir/libricss data/manifests/
done
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare musan manifest and RIRs"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
# We assume that you have downloaded the RIRS_NOISES corpus
# to $dl_dir/rirs_noises
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises/RIRS_NOISES data/manifests
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Extract features for LibriSpeech, trim to alignments, and shuffle the cuts"
# python local/compute_fbank_librispeech.py
lhotse combine data/manifests/librispeech_cuts_train* data/manifests/librispeech_cuts_train_all.jsonl.gz
lhotse cut trim-to-alignments --type word --max-pause 0.2 \
data/manifests/librispeech_cuts_train_all.jsonl.gz \
data/manifests/librispeech_cuts_train_all_trimmed.jsonl.gz
cat <(gunzip -c data/manifests/librispeech_cuts_train_all_trimmed.jsonl.gz) | \
shuf | gzip -c > data/manifests/librispeech_cuts_train_trimmed.jsonl.gz
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Create simulated mixtures from LibriSpeech (train and dev). This may take a while."
# We create a high overlap set which will be used during the model warmup phase, and a
# full training set that will be used for the subsequent training.
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
grep -v "0L" | grep -v "OV10" |\
gzip -c > data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
grep "OV40" |\
gzip -c > data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz
# Warmup mixtures (100k) based on high overlap (OV40)
log "Generating 100k anechoic train mixtures for warmup"
lhotse workflows simulate-meetings \
--method conversational \
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz \
--num-meetings 100000 \
--num-speakers-per-meeting 2,3 \
--max-duration-per-speaker 15.0 \
--max-utterances-per-speaker 3 \
--seed 1234 \
--num-jobs 4 \
data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
data/manifests/lsmix_cuts_train_clean_ov40.jsonl.gz
# Full training set (2,3 speakers) anechoic
log "Generating anechoic set (full)"
lhotse workflows simulate-meetings \
--method conversational \
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz \
--num-repeats 1 \
--num-speakers-per-meeting 2,3 \
--max-duration-per-speaker 15.0 \
--max-utterances-per-speaker 3 \
--seed 1234 \
--num-jobs 4 \
data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
data/manifests/lsmix_cuts_train_clean_full.jsonl.gz
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute fbank features for musan"
mkdir -p data/fbank
python local/compute_fbank_musan.py
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank features for simulated Libri-mix"
mkdir -p data/fbank
python local/compute_fbank_lsmix.py
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Add source feats to mixtures (useful for auxiliary tasks)"
python local/add_source_feats.py
log "Combining lsmix-clean and lsmix-rvb"
for type in full ov40; do
cat <(gunzip -c data/manifests/cuts_train_clean_${type}_sources.jsonl.gz) \
<(gunzip -c data/manifests/cuts_train_rvb_${type}_sources.jsonl.gz) |\
shuf | gzip -c > data/manifests/cuts_train_comb_${type}_sources.jsonl.gz
done
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compute fbank features for LibriCSS"
mkdir -p data/fbank
python local/compute_fbank_libricss.py
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Download LibriSpeech BPE model from HuggingFace."
mkdir -p data/lang_bpe_500
pushd data/lang_bpe_500
wget https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/resolve/main/data/lang_bpe_500/bpe.model
popd
fi