forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.sh
executable file
·196 lines (167 loc) · 5.55 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=30
stage=0
stop_stage=7
perturb_speed=true
# We assume dl_dir (download dir) contains the following
# directories and files. If not, you need to apply aishell2 through
# their official website.
# https://www.aishelltech.com/aishell_2
#
# - $dl_dir/aishell2
#
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
# If you have pre-downloaded it to /path/to/aishell2,
# you can create a symlink
#
# ln -sfv /path/to/aishell2 $dl_dir/aishell2
#
# The directory structure is
# aishell2/
# |-- AISHELL-2
# | |-- iOS
# |-- data
# |-- wav
# |-- trans.txt
# |-- dev
# |-- wav
# |-- trans.txt
# |-- test
# |-- wav
# |-- trans.txt
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aishell2 manifest"
# We assume that you have downloaded and unzip the aishell2 corpus
# to $dl_dir/aishell2
if [ ! -f data/manifests/.aishell2_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare aishell2 $dl_dir/aishell2 data/manifests -j $nj
touch data/manifests/.aishell2_manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell2"
if [ ! -f data/fbank/.aishell2.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed}
touch data/fbank/.aishell2.done
fi
fi
whisper_mel_bins=80
if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
log "Stage 30: Compute whisper fbank for aishell2"
if [ ! -f data/fbank/.aishell2.whisper.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
touch data/fbank/.aishell2.whisper.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
lang_char_dir=data/lang_char
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare char based lang"
mkdir -p $lang_char_dir
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/aishell2_supervisions_train.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# The implementation of chinese word segmentation for text,
# and it will take about 15 minutes.
# If you can't install paddle-tiny with python 3.8, please refer to
# https://github.com/fxsjy/jieba/issues/920
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
python3 ./local/text2segments.py \
--input-file $lang_char_dir/text \
--output-file $lang_char_dir/text_words_segmentation
fi
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
python3 ./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
python3 ./local/prepare_char.py
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f ${lang_char_dir}/3-gram.unpruned.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/text_words_segmentation \
-lm $lang_char_dir/3-gram.unpruned.arpa
fi
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building LG
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compile LG"
./local/compile_lg.py --lang-dir $lang_char_dir
fi