-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
2405 lines (1884 loc) · 83.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time
import random
import torch
import igraph
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import pickle as pkl
import gurobipy as gp
import numpy.random as rand
import torch.nn.functional as F
import torch_geometric.transforms as T
import torch.nn as nn
import pyscipopt
import ecole
import torch_geometric
from torch_geometric.nn import GATConv, SAGEConv, ChebConv, GINConv, GCNConv
from torch_geometric.data import Data
# from plotly import graph_objects as go
from gurobipy import GRB
from sklearn.metrics import f1_score, confusion_matrix
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
from scipy.sparse import csr_matrix
from sklearn.decomposition import PCA
from copy import deepcopy
# from SetCoverPy import setcover
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_sense_features(graph, weighted = False, directed = False, is_bipartite = False):
if is_bipartite:
sense_feat_dict = {
'Degree' : 0,
'Average Neighbor Degree' : 1,
}
else:
sense_feat_dict = {
'Degree' : 0,
'Clustering Coefficient' : 1,
'Average Neighbor Degree' : 2,
'Average Neighbor Clustering' : 3,
'Node Betweenness' : 4,
'Structural Holes Constraint' : 5,
}
ig = igraph.Graph([[e[0], e[1]] for e in nx.to_edgelist(graph)])
sense_features = np.zeros((len(graph), len(sense_feat_dict)))
if "Degree" in sense_feat_dict:
print ("Calculating Degrees... ", end = '\r')
# Degree
sense_features[:, sense_feat_dict['Degree']] = list(dict(graph.degree).values())
if "Average Neighbor Degree" in sense_feat_dict:
print ("Calculating Average Neighbor Degree... ", end = '\r')
# Neighbor Degree Average
sense_features[:, sense_feat_dict['Average Neighbor Degree']] = [np.mean([graph.degree[neighbor] for neighbor in dict(graph[node]).keys()]) for node in graph.nodes]
if "Clustering Coefficient" in sense_feat_dict:
print ("Calculating Clustering Coefficient... ", end = '\r')
# Clustering Coefficient
cluster_dict = nx.clustering(graph)
sense_features[:, sense_feat_dict['Clustering Coefficient']] = list(cluster_dict.values())
if "Average Neighbor Clustering" in sense_feat_dict:
print ("Calculating Average Neighbor Clustering Coefficients... ", end = '\r')
# Neighbor Average Clustering
sense_features[:, sense_feat_dict['Average Neighbor Clustering']] = [np.mean([cluster_dict[neighbor] for neighbor in list(graph[node])]) for node in graph.nodes]
if "Node Betweenness" in sense_feat_dict:
print ("Calculating Node Betweenness... ", end = '\r')
# Node Betweenness
sense_features[:, sense_feat_dict['Node Betweenness']] = ig.betweenness(directed = directed) #list(nx.algorithms.centrality.betweenness_centrality(graph).values())
if "Structural Holes Constraint" in sense_feat_dict:
print ("Calculating Structural Hole Constraint Scores... ", end = '\r')
# Structual Holes
sense_features[:, sense_feat_dict['Structural Holes Constraint']] = ig.constraint() #list(nx.algorithms.structuralholes.constraint(graph, weight = 'weight').values())
print ("Normalizing Features Between 0 And 1... ", end = '\r')
# Normalise to between 0 and 1
sense_features = (sense_features - np.min(sense_features, axis = 0)) / np.ptp(sense_features, axis = 0)
print ("Done ", end = '\r')
sense_features[np.isnan(sense_features)] = 0
return sense_feat_dict, sense_features
def create_graph(universe, subsets):
graph = nx.Graph()
hyp_graph = nx.Graph()
# Create Universe Edges
for element in universe:
graph.add_edge(str(universe), str(element))
# Create Subset Edges
for subset in subsets.values():
for element in subset:
graph.add_edge(str(element), str(subset))
hyp_graph = graph.copy().to_undirected()
hyp_graph.remove_node(str(universe))
# Select Nodes Reachable From Universe
reachable = list(nx.bfs_tree(graph, str(universe)))
subgraph = graph.subgraph(reachable)
graph = subgraph.copy()
# This is the mapping from subsets to graph nodes
set_to_idx = {n : idx for idx, n in enumerate(graph.nodes)}
print (len(set_to_idx))
idx_to_set = {v : k for k, v in set_to_idx.items()}
graph = nx.relabel_nodes(graph, mapping = set_to_idx, copy = True)
set_nodes = []
element_nodes = []
nodes = list(hyp_graph.nodes)
hyp_edge_weight = {}
hyp_node_weight = {}
for idx in range(len(nodes)):
if type(eval(nodes[idx])) == type(set()):
set_nodes.append(nodes[idx])
cover = 0
for el in eval(nodes[idx]):
if el in universe:
cover += 1
hyp_edge_weight[nodes[idx]] = (cover)
else:
element_nodes.append(nodes[idx])
for el in element_nodes:
hyp_node_weight[el] = (1 / len(hyp_graph[el]))
hyp_sti = {n : idx for idx, n in enumerate(hyp_graph.nodes)}
hyp_its = {v : k for k, v in hyp_sti.items()}
hyp_graph = nx.relabel_nodes(hyp_graph, mapping = hyp_sti, copy = True)
set_nodes_mapped = {x : hyp_sti[x] for x in set_nodes}
element_nodes_mapped = {x : hyp_sti[x] for x in element_nodes}
# uni_graph = nx.algorithms.bipartite.projected_graph(hyp_graph, [hyp_sti[x] for x in set_nodes])
return_dict = {
'graph' : graph,
'hyp_graph' : hyp_graph,
'uni_graph' : None,
'set_to_idx' : set_to_idx,
'idx_to_set' : idx_to_set,
'hyp_sti' : hyp_sti,
'hyp_its' : hyp_its,
'set_nodes_mapped' : set_nodes_mapped,
'element_nodes_mapped' : element_nodes_mapped,
'set_nodes' : [hyp_sti[x] for x in set_nodes],
'element_nodes' : [hyp_sti[x] for x in element_nodes],
'hyp_edge_weight' : hyp_edge_weight,
'hyp_node_weight' : hyp_node_weight,
}
return return_dict
def calculate_probability_matrix(I, gamma, omega):
# task weight based on current assignment?
# or should omega here be invariant to assignment?
#omega=np.sum(np.multiply(I, gamma),axis=1)
R = I * gamma;
W = I.T * omega;
delta = np.sum(R, axis=1);
d = np.sum(W, axis = 1);
P = np.diag(1.0 / d) @ W @ np.diag(1.0 / delta) @ R;
P = np.nan_to_num(P, 0);
return P;
def current_omega_gamma(I):
'''
Outputs omega and gamma when given I as the input
assuming that a uniform distribution of agent energy both across tasks from each agent and across agents from each task
'''
I_copy = deepcopy(I)
budget = I_copy.sum(axis = 0)
energy = I_copy.sum(axis = 1)
# H1: edges: tasks, Nodes: agents
# H2: edges: agents, Nodes: tasks
omega_H1 = energy
omega_H2 = budget
gamma_H1 = I_copy
gamma_H2 = I_copy.T
return omega_H1, omega_H2, gamma_H1, gamma_H2
def calculate_Laplacian_matrix (P, k = 1):
eigenValues, eigenVectors = eigs(P.transpose(), k, which = 'LR');
idx = eigenValues.argsort()[::-1]
eigenValues = eigenValues[idx]
eigenVectors = eigenVectors[:,idx]
Pi = np.diag(np.abs(eigenVectors[:,0]));
L = Pi - (Pi@P + P.transpose()@Pi)/2
return L;
def compute_pr(P, r, n, eps=1e-8):
x = np.ones(n) / n*1.0
flag = True
t=0
while flag:
x_new = (1 - r) * P @ x
x_new = x_new + np.ones(n) * r / n
diff = np.linalg.norm(x_new - x)
if np.linalg.norm(x_new - x,ord=1) < eps and t > 100:
flag = False
t=t+1
x = x_new
return x
def get_hyp_features(in_dict, universe, uni = False, hyp = True):
graph = in_dict['graph'].to_undirected()
hyp_graph = in_dict['hyp_graph']
uni_graph = in_dict['uni_graph']
set_to_idx = in_dict['set_to_idx']
idx_to_set = in_dict['idx_to_set']
hyp_sti = in_dict['hyp_sti']
hyp_its = in_dict['hyp_its']
set_nodes_mapped = in_dict['set_nodes_mapped']
element_nodes_mapped = in_dict['element_nodes_mapped']
hyp_edge_weight = in_dict['hyp_edge_weight']
hyp_node_weight = in_dict['hyp_node_weight']
set_nodes = in_dict['set_nodes']
element_nodes = in_dict['element_nodes']
if hyp:
# Compute Incidence Matrix
R = np.zeros((len(set_nodes), len(element_nodes)))
W = np.zeros((len(element_nodes), len(set_nodes)))
# Generate mapping for hypergraph incidence format
hyp_element_map = {element_nodes[idx] : idx for idx in range(len(element_nodes))}
hyp_set_map = {set_nodes[idx] : idx for idx in range(len(set_nodes))}
# Populate incidence matrix
incidence_matrix = np.zeros((len(element_nodes), len(set_nodes)))
for idx in range(len(element_nodes)):
e_node = hyp_element_map[element_nodes[idx]]
element_weight = hyp_node_weight[hyp_its[element_nodes[idx]]]
for set_node in hyp_graph[element_nodes[idx]]:
subset_weight = hyp_edge_weight[hyp_its[set_node]]
s_node = hyp_set_map[set_node]
incidence_matrix[e_node][s_node] = 1
W[e_node][s_node] = subset_weight
# Generate Weighted Matrices
W_vector = np.zeros((len(hyp_edge_weight), ))
for sset in hyp_edge_weight:
W_vector[hyp_set_map[hyp_sti[sset]]] = hyp_edge_weight[sset]
for el in eval(sset):
column_index = hyp_element_map[element_nodes_mapped[str(el)]]
row_index = hyp_set_map[hyp_sti[sset]]
R[row_index][column_index] = 1 / (sset.count(',') + 1) #hyp_node_weight[str(el)]
for i in range(R.shape[0]):
R[i, :] = R[i,:] / sum(R[i,:])
W = W / W.sum(axis = 1)[:, None]
# Generate Transition Probability Matrix
edge_p = np.transpose(R.dot(W))
P = np.transpose(W.dot(R))
# Generate PR Vectors
subset_pr = compute_pr(edge_p, r = 0.45, n = edge_p.shape[0], eps = 1e-8)
element_pr = compute_pr(P, r = 0.45, n = P.shape[0], eps = 1e-8)
else:
# Generate mapping for hypergraph incidence format
hyp_element_map = {element_nodes[idx] : idx for idx in range(len(element_nodes))}
hyp_set_map = {set_nodes[idx] : idx for idx in range(len(set_nodes))}
subset_pr = np.zeros((len(graph), 1))
element_pr = np.zeros((len(graph), 1))
if uni:
_, uni_sf = get_sense_features(uni_graph, is_bipartite = False, directed = False)
uni_remap = {n : idx for idx, n in enumerate(uni_graph.nodes)}
uni_graph = nx.relabel_nodes(uni_graph, uni_remap, copy = True)
else:
uni_sf = np.zeros((len(graph), 6))
uni_remap = {}
_, graph_sf = get_sense_features(graph, is_bipartite = True, directed = False)
uni_vec = np.zeros((len(graph), 6))
el_pr_vec = np.zeros((len(graph), 1))
sub_pr_vec = np.zeros((len(graph), 1))
cover_vec = np.zeros((len(graph), 1))
for idx in range(len(graph)):
node = idx_to_set[idx]
# Universe Node
if eval(node) == universe:
cover_vec[idx] = 0
# Subset Node
elif type(eval(node)) == type(set()):
if uni:
uni_vec[idx, :] = uni_sf[uni_remap[hyp_sti[node]], :]
sub_pr_vec[idx, :] = subset_pr[set_nodes.index(hyp_sti[node])]
sub = eval(node)
sub_cover = 0
for elm in sub:
if elm in universe:
sub_cover = sub_cover + 1
cover_vec[idx] = sub_cover
# Element Node
else:
el_pr_vec[idx, :] = element_pr[element_nodes.index(hyp_sti[node])]
cover_vec[idx] = 0
return graph_sf, uni_vec, el_pr_vec, sub_pr_vec, cover_vec
def train_graph_instance(subsets, universe, solutions, m_type = 'sage', cost_type = 'length', costs = None, epochs = 500, patience = 250, model_path = None, model_name = None, feats = None):
if cost_type == 'length':
optimal_objective = np.sum([len(subsets[int(s)]) for s in solutions[0]])
elif cost_type == 'equal':
optimal_objective = np.sum([1 for s in solutions[0]])
else:
optimal_objective = np.sum([costs[int(s)] for s in solutions[0]])
og_costs = costs.copy()
return_dict = create_graph(universe = universe,
subsets = subsets)
graph = return_dict['graph']
hyp_graph = return_dict['hyp_graph']
uni_graph = return_dict['uni_graph']
set_to_idx = return_dict['set_to_idx']
idx_to_set = return_dict['idx_to_set']
hyp_sti = return_dict['hyp_sti']
hyp_its = return_dict['hyp_its']
set_nodes_mapped = return_dict['set_nodes_mapped']
element_nodes_mapped = return_dict['element_nodes_mapped']
hyp_edge_weight = return_dict['hyp_edge_weight']
hyp_node_weight = return_dict['hyp_node_weight']
set_nodes = return_dict['set_nodes']
element_nodes = return_dict['element_nodes']
if costs is not None:
subset_to_cost = {str(sorted(v)) : costs[k] for k, v in subsets.items()}
remapped_costs = {}
for idx in range(len(graph)):
if str(idx_to_set[idx]) == str(universe):
remapped_costs[idx] = 0
elif '{' not in str(idx_to_set[idx]):
remapped_costs[idx] = 0
else:
remapped_costs[idx] = subset_to_cost[str(sorted(eval(idx_to_set[idx])))]
costs = remapped_costs
if cost_type == 'length':
costs_vec = np.array([len(idx_to_set[node]) for node in graph]).reshape(-1, 1)
elif cost_type == 'equal':
costs_vec = np.array([1 for node in graph]).reshape(-1, 1)
elif cost_type == 'custom':
costs_vec = np.array(list(costs.values())).reshape(-1, 1)
if cost_type != 'equal':
costs_vec = (costs_vec - np.min(costs_vec)) / np.ptp(costs_vec)
cat_vec = np.zeros((len(graph), 1))
universe_node = set_to_idx[str(universe)]
element_nodes = []
for node_set, node_id in set_to_idx.items():
if type(eval(node_set)) == int:
element_nodes.append(node_id)
cat_vec[node_id] = 1
cat_vec[universe_node] = 1
# Hypergraph Features
graph_sf, uni_vec, el_pr_vec, sub_pr_vec, cover_vec = get_hyp_features(return_dict, universe)
feat_list = []
if 'bi_sf' in feats:
feat_list.append(graph_sf)
if 'uni_sf' in feats:
feat_list.append(uni_vec)
if 'hyp_feat' in feats:
feat_list.append(el_pr_vec)
feat_list.append(sub_pr_vec)
if 'ppr' in feats:
vec = {idx : 0 for idx in range(len(graph))}
vec[set_to_idx[str(universe)]] = 1
ppr_dict = nx.pagerank(graph, personalization = vec)
ppr_vec = list(dict(sorted(nx.pagerank(graph, personalization = vec).items())).values())
ppr_vec = np.array(ppr_vec).reshape(-1, 1)
ppr_vec = (ppr_vec - np.min(ppr_vec, axis = 0)) / np.ptp(ppr_vec, axis = 0)
feat_list.append(ppr_vec)
if 'costs' in feats:
feat_list.append(costs_vec)
if 'cat' in feats:
feat_list.append(cat_vec)
if 'cover' in feats:
cover_vec = (cover_vec - np.min(cover_vec, axis = 0)) / np.ptp(cover_vec, axis = 0)
feat_list.append(cover_vec)
features = np.hstack(feat_list)
print (features.shape)
edge_index = np.array(list(nx.to_edgelist(graph)))[:, :2].T.astype(int)
data = Data(x = torch.tensor(features.astype(np.float32)),\
edge_index = torch.tensor(edge_index))
data = T.NormalizeFeatures()(data)
x, edge_index = data.x.to(device), data.edge_index.to(device)
y = np.zeros((len(graph), 1))
# Solution sets
# Build subsets from indices
for sol in solutions:
current_sol = [str(subsets[int(s)]) for s in sol]
# Map subsets to nodes
for sol in current_sol:
node = set_to_idx[str(sol)]
y[node] = 1
# Element nodes
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Class labels
_, counts = np.unique(y, return_counts = True)
class_weights = 1 - (counts / np.sum(counts))
weight = [class_weights[int(y[idx])] for idx in range(len(y))]
print ("Class Counts: ", class_weights)
print ("Graph Size: ", len(graph))
y = torch.tensor(y)
y = y.type(torch.float32)
y = y.to(device)
weight = torch.tensor(weight).reshape(-1, 1)# + 1
weight = weight.type(torch.float32)
weight = weight.to(device)
# Create model
if m_type == 'gat':
model = GAT(hidden = 32,
in_head = 16,
out_head = 64,
num_features = data.x.shape[1],
out_dim = 64)
elif m_type == 'sage':
model = SAGE(in_channels = data.x.shape[1],
hidden_channels = 512,
out_channels = 512,
num_layers = 2,
dropout = 0.4).to(device)
elif m_type == 'gin':
model = GIN(in_channels = data.x.shape[1],
hidden_channels = 512,
out_channels = 512,
num_layers = 2,
dropout = 0.4).to(device)
elif m_type == 'gcn':
model = GCN(in_channels = data.x.shape[1],
hidden_channels = 512,
out_channels = 512,
num_layers = 2,
dropout = 0.4).to(device)
elif m_type == 'cheb':
model = Cheb(in_channels = data.x.shape[1],
hidden_channels = 512,
out_channels = 512,
num_layers = 2,
dropout = 0.4).to(device)
model.to(device)
model.optimizer.zero_grad()
if model_path is not None:
if torch.cuda.is_available():
model.load_state_dict(torch.load(model_path))
else:
model.load_state_dict(torch.load(model_path, map_location = torch.device('cpu')))
model.optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4, weight_decay = 5e-4)
model.train()
# Train
best = 1e9
wait = 0
for ep in range(epochs):
print ('Epoch: ', str(ep), end = '\r')
model.optimizer.zero_grad()
out = model(x, edge_index)
loss = F.binary_cross_entropy(out, y)
if loss < best:
best = loss
wait = 0
torch.save(model.state_dict(), './' + model_name + '.pkl')
else:
wait = wait + 1
if wait == patience:
print ("Early Stopping")
break
loss.backward()
model.optimizer.step()
if torch.cuda.is_available():
model.load_state_dict(torch.load('./' + model_name + '.pkl'))
else:
model.load_state_dict(torch.load('./' + model_name + '.pkl', map_location = torch.device('cpu')))
# Evaluation
model.eval()
out = model(x, edge_index)
np_out = out.cpu().detach().numpy().reshape(-1, )
y = y.cpu().detach().numpy()
# Find Threshold
thresholds = np.arange(0, 1.02, 0.02)
f1_t_list = []
for t in thresholds:
f1_t_list.append(f1_score(y, (np_out > t).astype(int)))
f1 = max(f1_t_list)
threshold = thresholds[np.argmax(f1_t_list)]
auc = roc_auc_score(y, np_out)
aup = average_precision_score(y, np_out)
acc = accuracy_score(y, (np_out > threshold).astype(int))
conf = confusion_matrix(y, (np_out > threshold).astype(int))
print ("F1 : ", f1)
print ("AUC : ", auc)
print ("AUP :", aup)
print ("Acc : ", acc)
del model
print ("Output:")
plt.hist(np_out)
plt.show()
return f1, auc, aup, acc, np.divide(*class_weights)
def train_set_cover(train_instances, cost_type, epochs, patience, model_path, model_name, feats, m_type):
f1_list = []
auc_list = []
aup_list = []
acc_list = []
ratio_list = []
for idx in range(len(train_instances)):
print ("Instance : ", idx, "/", len(train_instances))
if train_instances[idx]['solutions'] != []:
if cost_type == 'custom':
costs = train_instances[idx]['costs']
else:
costs = None
f1, auc, aup, acc, ratio = train_graph_instance(subsets = train_instances[idx]['subsets'],
universe = train_instances[idx]['universe'],
solutions = train_instances[idx]['solutions'],
cost_type = cost_type,
costs = costs,
epochs = epochs,
patience = patience,
model_path = model_path,
model_name = model_name,
feats = feats,
m_type = m_type)
f1_list.append(f1)
auc_list.append(auc)
aup_list.append(aup)
acc_list.append(acc)
ratio_list.append(ratio)
if model_path is None:
model_path = './' + model_name + '.pkl'
return f1_list, auc_list, aup_list, auc_list, ratio_list
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(SAGE, self).__init__()
self.convs = torch.nn.ModuleList()
self.bns = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
self.bns.append(nn.BatchNorm1d(out_channels))
self.final = nn.Linear(out_channels, 1)
self.dropout = dropout
self.optimizer = torch.optim.Adam(self.parameters(), lr = 9e-5, weight_decay = 5e-4)
self.return_inter = False
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
self.final.reset_parameters()
def forward(self, x, adj_t):
for bn, conv in zip(self.bns[:-1], self.convs[:-1]):
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = bn(x)
x = self.convs[-1](x, adj_t)
x = self.bns[-1](x)
inter = x
x = self.final(x)
x = torch.sigmoid(x)
if self.return_inter:
return x, inter
else:
return x
class Cheb(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(Cheb, self).__init__()
self.convs = torch.nn.ModuleList()
self.bns = torch.nn.ModuleList()
self.convs.append(ChebConv(in_channels, hidden_channels, K = 2))
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(ChebConv(hidden_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.convs.append(ChebConv(hidden_channels, out_channels, K = 2))
self.bns.append(nn.BatchNorm1d(out_channels))
self.final = nn.Linear(out_channels, 1)
self.dropout = dropout
self.optimizer = torch.optim.Adam(self.parameters(), lr = 9e-5, weight_decay = 5e-4)
self.return_inter = False
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
self.final.reset_parameters()
def forward(self, x, adj_t):
for bn, conv in zip(self.bns[:-1], self.convs[:-1]):
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = bn(x)
x = self.convs[-1](x, adj_t)
x = self.bns[-1](x)
inter = x
x = self.final(x)
x = torch.sigmoid(x)
if self.return_inter:
return x, inter
else:
return x
class GAT(torch.nn.Module):
def __init__(self, hidden, in_head, out_head, num_features, out_dim):
super(GAT, self).__init__()
self.hidden = hidden
self.in_head = in_head
self.out_head = out_head
self.num_features = num_features
self.out_dim = out_dim
self.return_inter = False
self.conv1 = GATConv(self.num_features,
self.hidden,
heads = self.in_head,
dropout = 0.6)
self.conv2 = GATConv(self.hidden * self.in_head,
self.out_dim,
concat = False,
heads = self.out_head,
dropout = 0.6)
self.linear_one = nn.Linear(self.out_dim, self.out_dim)
self.linear_two = nn.Linear(self.out_dim, self.out_dim)
self.final = nn.Linear(self.out_dim, 1)
self.bn_conv_one = nn.BatchNorm1d(self.hidden * self.in_head)
self.bn_conv_two = nn.BatchNorm1d(self.out_dim)
self.bn_one = nn.BatchNorm1d(self.out_dim)
self.bn_two = nn.BatchNorm1d(self.out_dim)
self.optimizer = torch.optim.Adam(self.parameters(), lr = 9e-5, weight_decay = 5e-4)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = self.bn_conv_one(x)
x = F.relu(x)
x = F.dropout(x, p = 0.6,
training = self.training)
x = self.conv2(x, edge_index)
x = self.bn_conv_two(x)
x = F.dropout(x,
p = 0.6,
training = self.training)
x = self.linear_one(x)
x = self.bn_one(x)
x = F.relu(x)
x = F.dropout(x,
p = 0.6,
training = self.training)
x = self.linear_two(x)
x = self.bn_two(x)
x = F.relu(x)
inter = x
x = F.dropout(x,
p = 0.5,
training = self.training)
x = self.final(x)
x = torch.sigmoid(x)
if self.return_inter:
return x, inter
else:
return x
class GIN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GIN, self).__init__()
self.convs = torch.nn.ModuleList()
self.bns = torch.nn.ModuleList()
self.convs.append(GINConv(nn.Sequential(nn.Linear(in_channels, hidden_channels),
nn.ReLU(),
nn.BatchNorm1d(hidden_channels),
), eps=0., train_eps = False))
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(GINConv(nn.Sequential(nn.Linear(hidden_channels, hidden_channels),
nn.ReLU(),
nn.BatchNorm1d(hidden_channels),
), eps=0., train_eps = False))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.convs.append(GINConv(nn.Sequential(nn.Linear(hidden_channels, out_channels),
nn.ReLU(),
nn.BatchNorm1d(hidden_channels),
), eps=0., train_eps = False))
self.bns.append(nn.BatchNorm1d(out_channels))
self.final = nn.Linear(out_channels, 1)
self.dropout = dropout
self.optimizer = torch.optim.Adam(self.parameters(), lr = 9e-5, weight_decay = 5e-4)
self.return_inter = False
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
self.final.reset_parameters()
def forward(self, x, adj_t):
for bn, conv in zip(self.bns[:-1], self.convs[:-1]):
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = bn(x)
x = self.convs[-1](x, adj_t)
x = self.bns[-1](x)
inter = x
x = self.final(x)
x = torch.sigmoid(x)
if self.return_inter:
return x, inter
else:
return x
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GCN, self).__init__()
self.convs = torch.nn.ModuleList()
self.bns = torch.nn.ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(GCNConv(hidden_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels))
self.bns.append(nn.BatchNorm1d(out_channels))
self.final = nn.Linear(out_channels, 1)
self.dropout = dropout
self.optimizer = torch.optim.Adam(self.parameters(), lr = 9e-5, weight_decay = 5e-4)
self.return_inter = False
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
self.final.reset_parameters()
def forward(self, x, adj_t):
for bn, conv in zip(self.bns[:-1], self.convs[:-1]):
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = bn(x)
x = self.convs[-1](x, adj_t)
x = self.bns[-1](x)
inter = x
x = self.final(x)
x = torch.sigmoid(x)
if self.return_inter:
return x, inter
else:
return x
def gurobi_solver(subsets, universe, cost_type = 'equal', costs = None, initial_values = None, time_limit = None, stop_obj = None, callback = False, return_model_only = False):
# Create a new model
m = gp.Model("set_cover")
# Create variables
x = m.addVars(list(subsets.keys()),
vtype = GRB.BINARY,
name = [str(n) for n in subsets.keys()])
if cost_type == 'length':
costs = {key : len(subsets[key]) for key in subsets.keys()}
elif cost_type == 'equal':
costs = {key : 1 for key in subsets.keys()}
elif cost_type == 'custom':
None
else:
print ("Invalid Cost Type")
return
# Set objective
m.setObjective(gp.quicksum([costs[i] * x[i] for i in subsets.keys()]), GRB.MINIMIZE)
# Add constraints
for j in universe:
m.addConstr(gp.quicksum(x[i] for i in subsets.keys() if j in subsets[i]) >= 1)
m.setParam('Presolve', 0)
if time_limit is not None:
m.setParam('TimeLimit', time_limit)
if stop_obj is not None:
m.setParam('BestObjStop', stop_obj)
if initial_values is not None:
for i in range(len(subsets.keys())):
x[i].start = initial_values[i]
if return_model_only:
return m
# Optimize model
gurobi_time_start = time.time()
if callback:
m.optimize(callback_fn)
else:
m.optimize()
gurobi_time_end = time.time()
if m.status == gp.GRB.TIME_LIMIT and m.solCount == 0:
return None, None
# Print solution
solutions = []
gurobi_time = np.round(gurobi_time_end - gurobi_time_start, 4)
if 1:#m.status == gp.GRB.OPTIMAL:
for i in range(m.SolCount):
current_sol = []
m.setParam(gp.GRB.Param.SolutionNumber, i)
for v in m.getVars():
if v.x > 0.5:
current_sol.append(v.varName)
solutions.append(current_sol)
return solutions, gurobi_time, m.NodeCount
def callback_fn(model, where):