forked from DaniloXiao/BEV-RoadSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorRT_detect.py
189 lines (159 loc) · 8.72 KB
/
tensorRT_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
from data import CreateDataLoader
import torch
import numpy as np
import cv2
import argparse
import pycuda.driver as cuda
import pycuda.autoinit#need
import tensorrt as trt
import time
from util.util import confusion_matrix, getScores,merge_rgb_to_bev,tensor2labelim
#python tensorRT_detect.py --dataroot datasets/kitti --dataset kitti --name kitti --no_label --epoch kitti --output_video_fn trt_video
# Simple helper data class that's a little nicer to use than a 2-tuple.
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
# This function is generalized for multiple inputs/outputs.
# inputs and outputs are expected to be lists of HostDeviceMem objects.
def do_inference_static(context, bindings, inputs, outputs, stream, batch_size=1):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
def load_engine(trt_file_path, verbose=False):
"""Build a TensorRT engine from a TRT file."""
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
print('Loading TRT file from path {}...'.format(trt_file_path))
with open(trt_file_path, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
return engine
def set_config():
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', required=True, default='datasets/kitti',
help='path to images, should have training, validation and testing')
parser.add_argument('--name', type=str, default='experiment_name',
help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--epoch', type=str, default='latest', help='chooses which epoch to load')
parser.add_argument('--dataset', type=str, default='kitti', help='chooses which dataset to load.')
parser.add_argument('--use_sne', action='store_true', help='chooses if using sne')
parser.add_argument('--useWidth', type=int, default=224, help='scale images to this width')
parser.add_argument('--useHeight', type=int, default=288, help='scale images to this height')
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
parser.add_argument('--num_threads', default=1, type=int, help='# threads for loading data')
parser.add_argument('--serial_batches', action='store_true',
help='if true, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--results_dir', type=str, default='./testresults/', help='saves results here.')
parser.add_argument('--phase', type=str, default='test', help='train, val, test')
parser.add_argument('--no_label', action='store_true', help='chooses if we have gt labels in testing phase')
parser.add_argument('--view-img', action='store_true', default=True, help='show results')
parser.add_argument('--save-video', action='store_true', default=True,help='if true, save video, otherwise save image results')
parser.add_argument('--output_video_fn', type=str, default='detect', metavar='PATH',
help='the video filename if the output format is save-video')
parser.add_argument('--seed', type=int, default=0, help='seed for random generators')
parser.add_argument('--trt_path', type=str, default='./RoadSeg_int8.trt')
args = parser.parse_args()
return args
if __name__ == '__main__':
opt = set_config()
opt.num_threads = 1
opt.batch_size = 1
opt.serial_batches = True # no shuffle
opt.isTrain = False
save_dir = os.path.join(opt.results_dir, opt.name, opt.phase + '_' + opt.epoch)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#images = %d' % dataset_size)
time_torch, seen_torch = 0, 0
out_cap=None
palet_file = 'datasets/palette.txt'
impalette = list(np.genfromtxt(palet_file, dtype=np.uint8).reshape(3 * 256))
conf_mat = np.zeros((dataset.dataset.num_labels, dataset.dataset.num_labels), dtype=np.float)
engine = load_engine(opt.trt_path, verbose=False)
h_inputs, h_outputs, bindings, stream = allocate_buffers(engine)
with engine.create_execution_context() as context:
for i, data in enumerate(dataset):
gt = data['label'].int().numpy()
t1 = time.time()
img = data['rgb_image'][0].numpy()
h_inputs[0].host = img
trt_outputs = do_inference_static(context, bindings=bindings, inputs=h_inputs, outputs=h_outputs,
stream=stream, batch_size=1)
pred = torch.from_numpy(trt_outputs[0].reshape(1, 2, 288, 224))
oriSize = (data['oriSize'][0].item(), data['oriSize'][1].item())
image_name = data['path'][0]
img_channel = tensor2labelim(pred, impalette)
im = img_channel[:, :, (1, 0, 2)]# green channel to blue channel
im = cv2.resize(im, oriSize)
t2 = time.time()
time_torch += time.time() - t1
seen_torch += 1
# cv2.imwrite(os.path.join(save_dir, image_name), im)#only save pred_img
img_cam = cv2.imread('./datasets/kitti/image_cam/' + image_name)#in order to merge
img_bev = cv2.imread('./datasets/kitti/testing/image_2/' + image_name)#in order to merge
result_img = cv2.addWeighted(img_bev, 1, im, 1, 0)
out_img = merge_rgb_to_bev(img_cam, img_bev, result_img, output_width=460)
cv2.putText(out_img, '{:.1f} ms,{:.2f} FPS'.format((t2 - t1) * 1000, 1 / (t2 - t1)), (6, 30), 0,
fontScale=1, color=(0, 255, 0), thickness=2)
if opt.view_img:
cv2.imshow('detect', out_img)
if cv2.waitKey(1) == ord('q'):
cv2.destroyAllWindows()
break
if opt.save_video:
if out_cap is None:
out_cap_h, out_cap_w = out_img.shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out_cap = cv2.VideoWriter(
os.path.join(save_dir, '{}.avi'.format(opt.output_video_fn)),
fourcc, 30, (out_cap_w, out_cap_h))
out_cap.write(out_img)
else:
cv2.imwrite(os.path.join(save_dir, image_name), out_img)
Height, Width, _ = img_channel.shape
label = np.zeros((Height, Width), dtype=np.uint8)
label[img_channel[:, :, 1] > 0] = 1
label[label > 0] = 1
pred = [label]
gt = np.expand_dims(cv2.resize(np.squeeze(gt, axis=0), oriSize, interpolation=cv2.INTER_NEAREST), axis=0)
pred = np.expand_dims(cv2.resize(np.squeeze(pred, axis=0), oriSize, interpolation=cv2.INTER_NEAREST),
axis=0)
conf_mat += confusion_matrix(gt, pred, dataset.dataset.num_labels)
print("Inference time with PyTorch = %.3f ms" % (time_torch / seen_torch * 1E3))
globalacc, pre, recall, F_score, iou = getScores(conf_mat)
print('Epoch {0:} glob acc : {1:.3f}, pre : {2:.3f}, recall : {3:.3f}, F_score : {4:.3f}, IoU : {5:.3f}'.format(
opt.epoch, globalacc, pre, recall, F_score, iou))