-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter30.tex
850 lines (753 loc) · 25 KB
/
chapter30.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
\chapter{Algoritmos de línea de barrido}
\index{línea de barrido}
Muchos problemas geométricos se pueden resolver utilizando
\key{algoritmos de línea de barrido}.
La idea en estos algoritmos es representar
una instancia del problema como un conjunto de eventos que corresponden
a puntos en el plano.
Los eventos se procesan en orden creciente
de acuerdo con sus coordenadas x o y.
Como ejemplo, considere el siguiente problema:
Hay una empresa que tiene $n$ empleados,
y conocemos para cada empleado su hora de llegada y
su hora de salida en un día determinado.
Nuestra tarea es calcular el número máximo de
empleados que estaban en la oficina al mismo tiempo.
El problema se puede resolver modelando la situación
de modo que cada empleado reciba dos eventos que
correspondan a su hora de llegada y su hora de salida.
Después de ordenar los eventos, los revisamos
y hacemos un seguimiento del número de personas en la oficina.
Por ejemplo, la tabla
\begin{center}
\begin{tabular}{ccc}
persona & hora de llegada & hora de salida \\
\hline
John & 10 & 15 \\
Maria & 6 & 12 \\
Peter & 14 & 16 \\
Lisa & 5 & 13 \\
\end{tabular}
\end{center}
corresponde a los siguientes eventos:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\draw (0,0) rectangle (17,-6.5);
\path[draw,thick,-] (10,-1) -- (15,-1);
\path[draw,thick,-] (6,-2.5) -- (12,-2.5);
\path[draw,thick,-] (14,-4) -- (16,-4);
\path[draw,thick,-] (5,-5.5) -- (13,-5.5);
\draw[fill] (10,-1) circle [radius=0.05];
\draw[fill] (15,-1) circle [radius=0.05];
\draw[fill] (6,-2.5) circle [radius=0.05];
\draw[fill] (12,-2.5) circle [radius=0.05];
\draw[fill] (14,-4) circle [radius=0.05];
\draw[fill] (16,-4) circle [radius=0.05];
\draw[fill] (5,-5.5) circle [radius=0.05];
\draw[fill] (13,-5.5) circle [radius=0.05];
\node at (2,-1) {John};
\node at (2,-2.5) {Maria};
\node at (2,-4) {Peter};
\node at (2,-5.5) {Lisa};
\end{tikzpicture}
\end{center}
Revisamos los eventos de izquierda a derecha
y mantenemos un contador.
Siempre que una persona llega, aumentamos
el valor del contador en uno,
y cuando una persona se va,
disminuimos el valor del contador en uno.
La respuesta al problema es el máximo
valor del contador durante el algoritmo.
En el ejemplo, los eventos se procesan de la siguiente manera:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\path[draw,thick,->] (0.5,0.5) -- (16.5,0.5);
\draw (0,0) rectangle (17,-6.5);
\path[draw,thick,-] (10,-1) -- (15,-1);
\path[draw,thick,-] (6,-2.5) -- (12,-2.5);
\path[draw,thick,-] (14,-4) -- (16,-4);
\path[draw,thick,-] (5,-5.5) -- (13,-5.5);
\draw[fill] (10,-1) circle [radius=0.05];
\draw[fill] (15,-1) circle [radius=0.05];
\draw[fill] (6,-2.5) circle [radius=0.05];
\draw[fill] (12,-2.5) circle [radius=0.05];
\draw[fill] (14,-4) circle [radius=0.05];
\draw[fill] (16,-4) circle [radius=0.05];
\draw[fill] (5,-5.5) circle [radius=0.05];
\draw[fill] (13,-5.5) circle [radius=0.05];
\node at (2,-1) {John};
\node at (2,-2.5) {Maria};
\node at (2,-4) {Peter};
\node at (2,-5.5) {Lisa};
\path[draw,dashed] (10,0)--(10,-6.5);
\path[draw,dashed] (15,0)--(15,-6.5);
\path[draw,dashed] (6,0)--(6,-6.5);
\path[draw,dashed] (12,0)--(12,-6.5);
\path[draw,dashed] (14,0)--(14,-6.5);
\path[draw,dashed] (16,0)--(16,-6.5);
\path[draw,dashed] (5,0)--(5,-6.5);
\path[draw,dashed] (13,0)--(13,-6.5);
\node at (10,-7) {$+$};
\node at (15,-7) {$-$};
\node at (6,-7) {$+$};
\node at (12,-7) {$-$};
\node at (14,-7) {$+$};
\node at (16,-7) {$-$};
\node at (5,-7) {$+$};
\node at (13,-7) {$-$};
\node at (10,-8) {$3$};
\node at (15,-8) {$1$};
\node at (6,-8) {$2$};
\node at (12,-8) {$2$};
\node at (14,-8) {$2$};
\node at (16,-8) {$0$};
\node at (5,-8) {$1$};
\node at (13,-8) {$1$};
\end{tikzpicture}
\end{center}
Los símbolos $+$ y $-$ indican si el
valor del contador aumenta o disminuye,
y el valor del contador se muestra debajo.
El valor máximo del contador es 3
entre la llegada de John y la salida de María.
El tiempo de ejecución del algoritmo es $O(n \log n)$,
porque ordenar los eventos lleva $O(n \log n)$ tiempo
y el resto del algoritmo lleva $O(n)$ tiempo.
\section{Puntos de intersección}
\index{punto de intersección}
Dado un conjunto de $n$ segmentos de línea, cada uno de ellos siendo
horizontal o vertical, considere el problema de
contar el número total de puntos de intersección.
Por ejemplo, cuando los segmentos de línea son
\begin{center}
\begin{tikzpicture}[scale=0.5]
\path[draw,thick,-] (0,2) -- (5,2);
\path[draw,thick,-] (1,4) -- (6,4);
\path[draw,thick,-] (6,3) -- (10,3);
\path[draw,thick,-] (2,1) -- (2,6);
\path[draw,thick,-] (8,2) -- (8,5);
\end{tikzpicture}
\end{center}
hay tres puntos de intersección:
\begin{center}
\begin{tikzpicture}[scale=0.5]
\path[draw,thick,-] (0,2) -- (5,2);
\path[draw,thick,-] (1,4) -- (6,4);
\path[draw,thick,-] (6,3) -- (10,3);
\path[draw,thick,-] (2,1) -- (2,6);
\path[draw,thick,-] (8,2) -- (8,5);
\draw[fill] (2,2) circle [radius=0.15];
\draw[fill] (2,4) circle [radius=0.15];
\draw[fill] (8,3) circle [radius=0.15];
\end{tikzpicture}
\end{center}
Es fácil resolver el problema en tiempo $O(n^2)$,
porque podemos recorrer todas las parejas posibles de segmentos de línea
y verificar si se intersecan.
Sin embargo, podemos resolver el problema de manera más eficiente
en tiempo $O(n \log n)$ usando un algoritmo de línea de barrido
y una estructura de datos de consulta de rango.
La idea es procesar los puntos finales de la línea
segmentos de izquierda a derecha y
centrarse en tres tipos de eventos:
\begin{enumerate}[noitemsep]
\item[(1)] segmento horizontal comienza
\item[(2)] segmento horizontal termina
\item[(3)] segmento vertical
\end{enumerate}
Los siguientes eventos corresponden al ejemplo:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\path[draw,dashed] (0,2) -- (5,2);
\path[draw,dashed] (1,4) -- (6,4);
\path[draw,dashed] (6,3) -- (10,3);
\path[draw,dashed] (2,1) -- (2,6);
\path[draw,dashed] (8,2) -- (8,5);
\node at (0,2) {$1$};
\node at (5,2) {$2$};
\node at (1,4) {$1$};
\node at (6,4) {$2$};
\node at (6,3) {$1$};
\node at (10,3) {$2$};
\node at (2,3.5) {$3$};
\node at (8,3.5) {$3$};
\end{tikzpicture}
\end{center}
Recorremos los eventos de izquierda a derecha
y usamos una estructura de datos que mantiene un conjunto de
coordenadas y donde hay un segmento horizontal activo.
En el evento 1, agregamos la coordenada y del segmento
al conjunto, y en el evento 2, quitamos la
coordenada y del conjunto.
Los puntos de intersección se calculan en el evento 3.
Cuando hay un segmento vertical entre los puntos
$y_1$ e $y_2$, contamos el número de
segmentos horizontales activos cuya coordenada y está entre
$y_1$ e $y_2$, y agregamos este número al total
número de puntos de intersección.
Para almacenar las coordenadas y de los segmentos horizontales,
podemos usar un árbol binario indexado o un árbol de segmentos,
posiblemente con compresión de índices.
Cuando se utilizan tales estructuras, el procesamiento de cada evento
lleva $O(\log n)$ tiempo, por lo que el tiempo total de ejecución
del algoritmo es $O(n \log n)$.
\section{Problema del par más cercano}
\index{par más cercano}
Dado un conjunto de $n$ puntos, nuestro siguiente problema es
encontrar dos puntos cuya distancia euclidiana sea mínima.
Por ejemplo, si los puntos son
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(12,0)--(12,4)--(0,4)--(0,0);
\draw (1,2) circle [radius=0.1];
\draw (3,1) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5.5,1.5) circle [radius=0.1];
\draw (6,2.5) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (9,1.5) circle [radius=0.1];
\draw (10,2) circle [radius=0.1];
\draw (1.5,3.5) circle [radius=0.1];
\draw (1.5,1) circle [radius=0.1];
\draw (2.5,3) circle [radius=0.1];
\draw (4.5,1.5) circle [radius=0.1];
\draw (5.25,0.5) circle [radius=0.1];
\draw (6.5,2) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\begin{samepage}
deberíamos encontrar los siguientes puntos:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(12,0)--(12,4)--(0,4)--(0,0);
\draw (1,2) circle [radius=0.1];
\draw (3,1) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5.5,1.5) circle [radius=0.1];
\draw[fill] (6,2.5) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (9,1.5) circle [radius=0.1];
\draw (10,2) circle [radius=0.1];
\draw (1.5,3.5) circle [radius=0.1];
\draw (1.5,1) circle [radius=0.1];
\draw (2.5,3) circle [radius=0.1];
\draw (4.5,1.5) circle [radius=0.1];
\draw (5.25,0.5) circle [radius=0.1];
\draw[fill] (6.5,2) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\end{samepage}
Este es otro ejemplo de un problema
que se puede resolver en tiempo $O(n \log n)$
usando un algoritmo de línea de barrido\footnote{Además de este enfoque,
también hay un
algoritmo de dividir y conquistar de tiempo $O(n \log n)$ \cite{sha75}
que divide los puntos en dos conjuntos y recursivamente
resuelve el problema para ambos conjuntos.}.
Recorremos los puntos de izquierda a derecha
y mantenemos un valor $d$: la distancia mínima
entre dos puntos vistos hasta ahora.
En cada punto, encontramos el punto más cercano a la izquierda.
Si la distancia es menor que $d$, es la
nueva distancia mínima y actualizamos
el valor de $d$.
Si el punto actual es $(x,y)$
y hay un punto a la izquierda
a una distancia menor que $d$,
la coordenada x de dicho punto debe
estar entre $[x-d,x]$ y la coordenada y
debe estar entre $[y-d,y+d]$.
Por lo tanto, basta con considerar puntos
que están ubicados en esos rangos,
lo que hace que el algoritmo sea eficiente.
Por ejemplo, en la siguiente imagen, la
región marcada con líneas discontinuas contiene
los puntos que pueden estar a una distancia de $d$
del punto activo:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(12,0)--(12,4)--(0,4)--(0,0);
\draw (1,2) circle [radius=0.1];
\draw (3,1) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5.5,1.5) circle [radius=0.1];
\draw (6,2.5) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (9,1.5) circle [radius=0.1];
\draw (10,2) circle [radius=0.1];
\draw (1.5,3.5) circle [radius=0.1];
\draw (1.5,1) circle [radius=0.1];
\draw (2.5,3) circle [radius=0.1];
\draw (4.5,1.5) circle [radius=0.1];
\draw (5.25,0.5) circle [radius=0.1];
\draw[fill] (6.5,2) circle [radius=0.1];
\draw[dashed] (6.5,0.75)--(6.5,3.25);
\draw[dashed] (5.25,0.75)--(5.25,3.25);
\draw[dashed] (5.25,0.75)--(6.5,0.75);
\draw[dashed] (5.25,3.25)--(6.5,3.25);
\draw [decoration={brace}, decorate, line width=0.3mm] (5.25,3.5) -- (6.5,3.5);
\node at (5.875,4) {$d$};
\draw [decoration={brace}, decorate, line width=0.3mm] (6.75,3.25) -- (6.75,2);
\node at (7.25,2.625) {$d$};
\end{tikzpicture}
\end{center}
La eficiencia del algoritmo se basa en el hecho de
que la región siempre contiene
solo $O(1)$ puntos.
Podemos recorrer esos puntos en tiempo $O(\log n)$
manteniendo un conjunto de puntos cuya coordenada x
está entre $[x-d,x]$, en orden creciente
según sus coordenadas y.
La complejidad temporal del algoritmo es $O(n \log n)$,
porque recorremos $n$ puntos y
encontramos para cada punto el punto más cercano a la izquierda
en tiempo $O(\log n)$.
\section{Problema de la envolvente convexa}
Una \key{envolvente convexa} es el polígono convexo más pequeño
que contiene todos los puntos de un conjunto dado.
La convexidad significa que un segmento de línea entre
dos vértices cualesquiera del polígono está completamente
dentro del polígono.
\begin{samepage}
Por ejemplo, para los puntos
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\end{samepage}
la envolvente convexa es la siguiente:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0)--(4,-1)--(7,1)--(6,3)--(2,4)--(0,2)--(0,0);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\end{tikzpicture}
\end{center}
\index{Algoritmo de Andrew}
\key{Algoritmo de Andrew} \cite{and79} proporciona
una forma sencilla de
construir la envolvente convexa para un conjunto de puntos
en tiempo $O(n \log n)$.
El algoritmo primero localiza los puntos más a la izquierda
y más a la derecha, y luego
construye la envolvente convexa en dos partes:
primero la envolvente superior y luego la envolvente inferior.
Ambas partes son similares, por lo que podemos concentrarnos en
construir la envolvente superior.
Primero, ordenamos los puntos principalmente según
las coordenadas x y secundariamente según las coordenadas y.
Después de esto, recorremos los puntos y
agregamos cada punto a la envolvente.
Siempre después de agregar un punto a la envolvente,
nos aseguramos de que el último segmento de línea
en la envolvente no gire a la izquierda.
Mientras gire a la izquierda, eliminamos repetidamente el
penúltimo punto de la envolvente.
Las siguientes imágenes muestran cómo
funciona el algoritmo de Andrew:
\\
\begin{tabular}{ccccccc}
\\
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(1,1);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(1,1)--(2,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,2);
\end{tikzpicture}
\\
1 & & 2 & & 3 & & 4 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,2)--(2,4);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,-1);
\end{tikzpicture}
\\
5 & & 6 & & 7 & & 8 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,-1)--(4,0);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,0);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,0)--(4,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(3,2)--(4,3);
\end{tikzpicture}
\\
9 & & 10 & & 11 & & 12 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2)--(6,1);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2)--(6,1)--(6,3);
\end{tikzpicture}
\\
13 & & 14 & & 15 & & 16 \\
\end{tabular}
\\
\begin{tabular}{ccccccc}
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(5,2)--(6,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(4,3)--(6,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(6,3);
\end{tikzpicture}
& \hspace{0.1cm} &
\begin{tikzpicture}[scale=0.3]
\draw (-1,-2)--(8,-2)--(8,5)--(-1,5)--(-1,-2);
\draw (0,0) circle [radius=0.1];
\draw (4,-1) circle [radius=0.1];
\draw (7,1) circle [radius=0.1];
\draw (6,3) circle [radius=0.1];
\draw (2,4) circle [radius=0.1];
\draw (0,2) circle [radius=0.1];
\draw (1,1) circle [radius=0.1];
\draw (2,2) circle [radius=0.1];
\draw (3,2) circle [radius=0.1];
\draw (4,0) circle [radius=0.1];
\draw (4,3) circle [radius=0.1];
\draw (5,2) circle [radius=0.1];
\draw (6,1) circle [radius=0.1];
\draw (0,0)--(0,2)--(2,4)--(6,3)--(7,1);
\end{tikzpicture}
\\
17 & & 18 & & 19 & & 20
\end{tabular}