-
Notifications
You must be signed in to change notification settings - Fork 567
/
Copy pathloader.py
171 lines (147 loc) · 5.23 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import re
import codecs
from data_utils import create_dico, create_mapping, zero_digits
from data_utils import iob2, iob_iobes, get_seg_features
def load_sentences(path, lower, zeros):
"""
Load sentences. A line must contain at least a word and its tag.
Sentences are separated by empty lines.
"""
sentences = []
sentence = []
num = 0
for line in codecs.open(path, 'r', 'utf8'):
num+=1
line = zero_digits(line.rstrip()) if zeros else line.rstrip()
# print(list(line))
if not line:
if len(sentence) > 0:
if 'DOCSTART' not in sentence[0][0]:
sentences.append(sentence)
sentence = []
else:
if line[0] == " ":
line = "$" + line[1:]
word = line.split()
# word[0] = " "
else:
word= line.split()
assert len(word) >= 2, print([word[0]])
sentence.append(word)
if len(sentence) > 0:
if 'DOCSTART' not in sentence[0][0]:
sentences.append(sentence)
return sentences
def update_tag_scheme(sentences, tag_scheme):
"""
Check and update sentences tagging scheme to IOB2.
Only IOB1 and IOB2 schemes are accepted.
"""
for i, s in enumerate(sentences):
tags = [w[-1] for w in s]
# Check that tags are given in the IOB format
if not iob2(tags):
s_str = '\n'.join(' '.join(w) for w in s)
raise Exception('Sentences should be given in IOB format! ' +
'Please check sentence %i:\n%s' % (i, s_str))
if tag_scheme == 'iob':
# If format was IOB1, we convert to IOB2
for word, new_tag in zip(s, tags):
word[-1] = new_tag
elif tag_scheme == 'iobes':
new_tags = iob_iobes(tags)
for word, new_tag in zip(s, new_tags):
word[-1] = new_tag
else:
raise Exception('Unknown tagging scheme!')
def char_mapping(sentences, lower):
"""
Create a dictionary and a mapping of words, sorted by frequency.
"""
chars = [[x[0].lower() if lower else x[0] for x in s] for s in sentences]
dico = create_dico(chars)
dico["<PAD>"] = 10000001
dico['<UNK>'] = 10000000
char_to_id, id_to_char = create_mapping(dico)
print("Found %i unique words (%i in total)" % (
len(dico), sum(len(x) for x in chars)
))
return dico, char_to_id, id_to_char
def tag_mapping(sentences):
"""
Create a dictionary and a mapping of tags, sorted by frequency.
"""
tags = [[char[-1] for char in s] for s in sentences]
dico = create_dico(tags)
tag_to_id, id_to_tag = create_mapping(dico)
print("Found %i unique named entity tags" % len(dico))
return dico, tag_to_id, id_to_tag
def prepare_dataset(sentences, char_to_id, tag_to_id, lower=False, train=True):
"""
Prepare the dataset. Return a list of lists of dictionaries containing:
- word indexes
- word char indexes
- tag indexes
"""
none_index = tag_to_id["O"]
def f(x):
return x.lower() if lower else x
data = []
for s in sentences:
string = [w[0] for w in s]
chars = [char_to_id[f(w) if f(w) in char_to_id else '<UNK>']
for w in string]
segs = get_seg_features("".join(string))
if train:
tags = [tag_to_id[w[-1]] for w in s]
else:
tags = [none_index for _ in chars]
data.append([string, chars, segs, tags])
return data
def augment_with_pretrained(dictionary, ext_emb_path, chars):
"""
Augment the dictionary with words that have a pretrained embedding.
If `words` is None, we add every word that has a pretrained embedding
to the dictionary, otherwise, we only add the words that are given by
`words` (typically the words in the development and test sets.)
"""
print('Loading pretrained embeddings from %s...' % ext_emb_path)
assert os.path.isfile(ext_emb_path)
# Load pretrained embeddings from file
pretrained = set([
line.rstrip().split()[0].strip()
for line in codecs.open(ext_emb_path, 'r', 'utf-8')
if len(ext_emb_path) > 0
])
# We either add every word in the pretrained file,
# or only words given in the `words` list to which
# we can assign a pretrained embedding
if chars is None:
for char in pretrained:
if char not in dictionary:
dictionary[char] = 0
else:
for char in chars:
if any(x in pretrained for x in [
char,
char.lower(),
re.sub('\d', '0', char.lower())
]) and char not in dictionary:
dictionary[char] = 0
word_to_id, id_to_word = create_mapping(dictionary)
return dictionary, word_to_id, id_to_word
def save_maps(save_path, *params):
"""
Save mappings and invert mappings
"""
pass
# with codecs.open(save_path, "w", encoding="utf8") as f:
# pickle.dump(params, f)
def load_maps(save_path):
"""
Load mappings from the file
"""
pass
# with codecs.open(save_path, "r", encoding="utf8") as f:
# pickle.load(save_path, f)