-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspeech.py
659 lines (590 loc) · 41.6 KB
/
speech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
from __future__ import print_function
import sys
sys.path.append("../")
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from torchmetrics import HingeLoss
from transformers import BertPreTrainedModel, BertModel, RobertaPreTrainedModel, RobertaModel, XLNetPreTrainedModel, XLNetModel, DistilBertPreTrainedModel, DistilBertModel
import math
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger = logging.getLogger(__name__)
relation_map_ontoevent = {'BEFORE': 1, 'AFTER': 2, 'EQUAL': 3, 'CAUSE': 4, 'CAUSEDBY': 5, 'COSUPER': 6, 'SUBSUPER': 7, 'SUPERSUB': 8}
relation_map_mavenere = {'BEFORE': 1, 'OVERLAP': 2, 'CONTAINS': 3, 'SIMULTANEOUS': 4, 'BEGINS-ON': 5, 'ENDS-ON': 6, 'CAUSE': 7, 'PRECONDITION': 8, 'subevent_relations': 9, "coreference": 10}
dict_num_sent2rel = {103: len(relation_map_ontoevent), 171: len(relation_map_mavenere)}
ENERGY_WEIGHT = 1
SPC_TOKEN_WEIGHT = 0.1
NA_REL_WEIGHT = 0.1
NA_REL_WEIGHT_TEMP = 0.3
NA_REL_WEIGHT_CAUSAL = 0.02
NA_REL_WEIGHT_SUB = 0.01
class SPEECH(BertPreTrainedModel): # BertPreTrainedModel, RobertaPreTrainedModel, XLNetPreTrainedModel, DistilBertPreTrainedModel
def __init__(self, config):
super().__init__(config)
self.lm = BertModel(config) # BertModel,RobertaModel,XLNetModel,DistilBertModel
self.num_labels4token = config.num_labels
# print(config.num_labels) # 101+2 (100 + 1 + 2) for ontoevent, 169+2 (168 + 1 + 2) for maven-ere
self.num_labels4sent = config.num_labels - 2
self.relation_size = dict_num_sent2rel[config.num_labels] + 1 # +1 for NA
self.maxpooling = nn.MaxPool1d(128)
self.hidden_dropout_prob = config.hidden_dropout_prob
self.dropout = nn.Dropout(self.hidden_dropout_prob)
self.aggr = "task_based" # task_based, mean, max, max_pooling
# some hyperparameters
self.ratio_loss_token_plus = 1 # \mu_1
self.ratio_loss_token = 1 # \lambda_1
self.ratio_loss_sent_plus = 1 # \mu_2
self.ratio_loss_sent = 0.1 # \lambda_2
self.ratio_loss_doc_plus = 1 # \mu_3
self.ratio_loss_doc = 0.1 # \lambda_3
print("*"*20, "Speech", "*"*20)
print("self.ratio_loss_token_plus", self.ratio_loss_token_plus)
print("self.ratio_loss_token", self.ratio_loss_token)
print("self.ratio_loss_sent_plus", self.ratio_loss_sent_plus)
print("self.ratio_loss_sent", self.ratio_loss_sent)
print("self.ratio_loss_doc_plus", self.ratio_loss_doc_plus)
print("self.ratio_loss_doc", self.ratio_loss_doc)
# For Event Trigger Classification on OntoEvent-Doc dataset: \lambda_1, \lambda_2, \lambda_3 --> 1, 0.1, 0.1
# For Event Classification on OntoEvent-Doc dataset: \lambda_1, \lambda_2, \lambda_3 --> 0.1, 1, 0.1
# For Event-Relation Extraction on OntoEvent-Doc dataset: \lambda_1, \lambda_2, \lambda_3 --> 1, 0.1, 0.1
# For Event Trigger Classification on Maven-Ere dataset: \lambda_1, \lambda_2, \lambda_3 --> 1, 0.1, 0.1
# For Event Classification on Maven-Ere dataset: \lambda_1, \lambda_2, \lambda_3 --> 1, 0.1, 0.1
# For Event-Relation Extraction on Maven-Ere dataset: \lambda_1, \lambda_2, \lambda_3 --> 0.1, 0.1, 1 for doc_all; 1, 1, 4 for doc_joint; 1, 0.1, 0.1 for doc_temporal & doc_causal; 1, 0.1, 0.08 for doc_sub
# classes of subtasks
self.token = Token(self.num_labels4token, config.hidden_size, self.hidden_dropout_prob, self.ratio_loss_token_plus)
self.sent = Sentence(self.num_labels4sent, config.hidden_size, self.hidden_dropout_prob, self.ratio_loss_sent_plus)
self.doc = Document(self.relation_size, config.hidden_size, self.hidden_dropout_prob, self.ratio_loss_doc_plus)
self.init_weights()
def get_pos_in_batch(num, list_num, max_mention_size):
""" num: the reconstructed pos in the real batch (the real batch size is a sum of real mention sizes)
list_num: the list of real mention size
max_mention_size: the maximum number of event mentions in one doc
return: the pos index in the padding normalized batch whose size is [batch_size, max_size]
"""
batch_size = list_num.size(0)
if batch_size == 1 or num <= list_num[0].item():
return 0, num
sum_num = 0
for i in range(batch_size-1):
sum_num += min(list_num[i].item(), max_mention_size)
if sum_num < num <= sum_num + min(list_num[i+1].item(), max_mention_size):
return i+1, num - sum_num - 1
def forward(self, example_id=None, task_name=None, doc_ere_task_type=None, max_mention_size=None, pad_token_label_id=None, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mention_size=None, labels4token=None, labels4sent=None, mat_rel_label=None):
batch_size = int(input_ids.size(0) / max_mention_size[0].item())
num_or_max_mention = max_mention_size[0].item()
max_seq_length = input_ids.size(1)
if_special = 0
if batch_size < math.ceil(input_ids.size(0) / max_mention_size[0].item()): # abnormal......may happen in the last batch?
if_special = 1
batch_size = 1 # regard the rest samples exist in one batch, note that their labels, mention_size and doc_token_emb should also be reshaped
num_or_max_mention = input_ids.size(0)
real_batch_size = mat_rel_label.size(0)
real_max_mention = mat_rel_label.size(1)
mention_size_rebuilt = torch.ones([1], dtype=torch.long).to(device)
labels4token_rebuilt = (torch.ones([1, num_or_max_mention, max_seq_length], dtype=torch.long) * pad_token_label_id[0].item()).to(device)
labels4sent_rebuilt = (torch.ones([1, num_or_max_mention], dtype=torch.long) * pad_token_label_id[0].item()).to(device)
mat_rel_label_rebulit = torch.zeros([1, num_or_max_mention, num_or_max_mention], dtype=torch.long).to(device)
count_num_mention = 0
for i in range(real_batch_size):
real_num_mention = min(mention_size[i].item(), real_max_mention)
real_num_mention = min(real_num_mention, num_or_max_mention)
real_num_mention = min(real_num_mention, num_or_max_mention - i*real_max_mention)
labels4token_rebuilt[0, count_num_mention: count_num_mention + real_num_mention, :] = labels4token[i, :real_num_mention, :]
labels4sent_rebuilt[0, count_num_mention: count_num_mention + real_num_mention] = labels4sent[i, :real_num_mention]
mat_rel_label_rebulit[0, count_num_mention: count_num_mention + real_num_mention, count_num_mention: count_num_mention + real_num_mention] = mat_rel_label[i, :real_num_mention, :real_num_mention]
count_num_mention += real_num_mention
mention_size_rebuilt[0] = count_num_mention
outputs = self.lm(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
doc_token_embed = outputs[0].view(batch_size, num_or_max_mention, max_seq_length, -1) # [batch_size, max_size, max_length, hidden_size]
if if_special == 1:
doc_token_embed_rebuilt = doc_token_embed.clone()
real_batch_size = mat_rel_label.size(0)
real_max_mention = mat_rel_label.size(1)
count_num_mention = 0
for i in range(real_batch_size):
real_num_mention = min(mention_size[i].item(), real_max_mention)
real_num_mention = min(real_num_mention, num_or_max_mention)
real_num_mention = min(real_num_mention, num_or_max_mention - i*real_max_mention)
doc_token_embed_rebuilt[0, count_num_mention: count_num_mention + real_num_mention, :, :] = doc_token_embed[:, real_max_mention*i: real_max_mention*i + real_num_mention, :, :]
count_num_mention += real_num_mention
mention_size = mention_size_rebuilt
labels4token = labels4token_rebuilt
labels4sent = labels4sent_rebuilt
mat_rel_label = mat_rel_label_rebulit
doc_token_embed = doc_token_embed_rebuilt.clone()
if labels4token is not None:
loss_token, logits_token, token_labels_real = self.token(doc_token_embed, labels4token, mention_size, attention_mask, pad_token_label_id)
outputs = (logits_token, token_labels_real,) + outputs[2:]
# get sentence embedding
# # for max_pooling
# doc_sent_embed = self.maxpooling(doc_token_embed.view(batch_size*num_or_max_mention, max_seq_length, -1).transpose(1, 2)).contiguous().view(batch_size, num_or_max_mention, self.config.hidden_size)
# doc_sent_embed = F.relu(doc_sent_embed) # [batch_size, max_size, hidden_size]
# # for task_based
doc_sent_embed = doc_token_embed[:, :, 0, :] # [batch_size, max_size, hidden_size]
if self.aggr == "task_based":
indices_trigger_token = (labels4token < self.num_labels4sent - 2).nonzero() # not non-trigger or padding
for trigger_index in indices_trigger_token:
if trigger_index[0] < doc_sent_embed.size(0) and trigger_index[1] < doc_sent_embed.size(1) and trigger_index[2] < max_seq_length:
doc_sent_embed[trigger_index[0]][trigger_index[1]] = doc_token_embed[trigger_index[0]][trigger_index[1]][trigger_index[2]]
elif self.aggr == "mean" or self.aggr == "max":
for i in range(batch_size):
for j in range(num_or_max_mention):
index_valid_token = torch.nonzero(torch.lt(labels4token, pad_token_label_id[0].item())).reshape(-1)
tensor_valid_token = doc_token_embed[i, j, index_valid_token, :]
if self.aggr == "mean":
doc_sent_embed[i, j, :] = tensor_valid_token.mean(0)
elif self.aggr == "max":
doc_sent_embed[i, j, :] = tensor_valid_token.max(0)[0]
elif self.aggr == "max_pooling":
doc_sent_embed = self.maxpooling(doc_token_embed.view(batch_size*num_or_max_mention, max_seq_length, -1).transpose(1, 2)).contiguous().view(batch_size, num_or_max_mention, self.config.hidden_size)
doc_sent_embed = F.relu(doc_sent_embed) # [batch_size, max_size, hidden_size]
# doc_sent_embed = self.dropout(doc_sent_embed)
if labels4sent is not None:
loss_sent, logits_sent, labels_sent_real, proto_embed = self.sent(doc_sent_embed, labels4sent, mention_size)
outputs = (logits_sent, labels_sent_real,) + outputs
if mat_rel_label is not None:
if doc_ere_task_type != "doc_joint":
loss_doc, logits_sentpair, labels_doc = self.doc(doc_sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type)
outputs = (logits_sentpair, labels_doc,) + outputs
else:
if task_name == "maven-ere":
loss_doc, logits_sentpair_temp, labels_sentpair_temporal, logits_sentpair_causal, labels_sentpair_causal, logits_sentpair_sub, labels_sentpair_sub, logits_sentpair_corref, labels_sentpair_corref = self.doc(doc_sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type)
outputs = (logits_sentpair_temp, labels_sentpair_temporal, logits_sentpair_causal, labels_sentpair_causal, logits_sentpair_sub, labels_sentpair_sub, logits_sentpair_corref, labels_sentpair_corref,) + outputs
else:
loss_doc, logits_sentpair_temp, labels_sentpair_temporal, logits_sentpair_causal, labels_sentpair_causal, logits_sentpair_sub, labels_sentpair_sub = self.doc(doc_sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type)
outputs = (logits_sentpair_temp, labels_sentpair_temporal, logits_sentpair_causal, labels_sentpair_causal, logits_sentpair_sub, labels_sentpair_sub,) + outputs
loss_all = self.ratio_loss_token*loss_token + self.ratio_loss_sent*loss_sent + self.ratio_loss_doc*loss_doc
torch.autograd.set_detect_anomaly(True)
outputs = (loss_all,) + outputs
return outputs
class Token(nn.Module):
def __init__(self, tokentype_size, hidden_size, hidden_dropout_prob, ratio_loss_token_plus):
super(Token, self).__init__()
self.tokentype_size = tokentype_size
self.ratio_loss_token_plus = ratio_loss_token_plus
self.dropout = nn.Dropout(hidden_dropout_prob)
self.token_classifier = nn.Linear(hidden_size, self.tokentype_size)
self.mat_local4token = nn.Embedding(self.tokentype_size, hidden_size).to(device)
self.mat_label4token = nn.Embedding(self.tokentype_size, self.tokentype_size).to(device)
def get_para_vec_mat(self, para_type):
mat_local4token = self.mat_local4token(torch.tensor(range(0, self.tokentype_size)).to(device))
mat_label4token = self.mat_label4token(torch.tensor(range(0, self.tokentype_size)).to(device))
if para_type == "mat_local":
return mat_local4token
else:
return mat_label4token
def calculate_prob(self, token_embed):
# token_embed = self.dropout(token_embed)
logits_token = F.softmax(self.token_classifier(token_embed))
# logits_token = self.token_classifier(token_embed)
return logits_token
def token_energy_function(self, token_embed, token_y):
token_local_energy_temp = torch.matmul(self.get_para_vec_mat("mat_local"), token_embed.transpose(1, 2))
token_local_energy = torch.sum(torch.mul(token_y, token_local_energy_temp.transpose(1, 2)))
batch_size = token_y.size(0)
seq_length = token_y.size(1)
for i in range(seq_length-1):
token_label_energy = torch.sum(torch.matmul(torch.matmul(token_y[:, i, :], self.get_para_vec_mat("mat_label")), token_y[:, i+1, :].transpose(0, 1)))
token_energy = token_local_energy + token_label_energy
return token_energy
def label2vec(self, label, label_size):
batch_size = label.size(0)
seq_len = label.size(1)
label_vec = torch.zeros([batch_size, seq_len, label_size]).to(device)
for i in range(batch_size):
for j in range(seq_len):
label_vec[i][j][label[i][j]] = 1
return label_vec
def get_the_real_token_task(self, token_embed, token_labels, mention_size, attention_mask):
batch_size = token_embed.size(0)
max_mention_size = token_embed.size(1)
max_seq_length = token_embed.size(2)
hidden_size = token_embed.size(3)
attention_mask = attention_mask.view(batch_size, max_mention_size, max_seq_length)
num_mention = 0
norm_mention_size = [max_mention_size] * batch_size
for i in range(batch_size):
norm_mention_size[i] = min(mention_size[i].item(), max_mention_size)
num_mention += norm_mention_size[i]
token_embed_real = torch.zeros([num_mention, max_seq_length, hidden_size], dtype=torch.float).to(device)
token_labels_real = torch.zeros([num_mention, max_seq_length], dtype=torch.long).to(device)
attention_mask_real = torch.zeros([num_mention, max_seq_length], dtype=torch.float).to(device)
count_mention = 0
for i in range(batch_size):
token_embed_real[count_mention:count_mention+norm_mention_size[i], :, :] = token_embed[i, :norm_mention_size[i], :, :]
token_labels_real[count_mention:count_mention+norm_mention_size[i], :] = token_labels[i, :norm_mention_size[i], :]
attention_mask_real[count_mention:count_mention+norm_mention_size[i], :] = attention_mask[i, :norm_mention_size[i], :]
count_mention += norm_mention_size[i]
return token_embed_real, token_labels_real, attention_mask_real
def forward(self, token_embed, token_labels, mention_size, attention_mask, pad_token_label_id):
token_embed_real, token_labels_real, attention_mask_real = self.get_the_real_token_task(token_embed, token_labels, mention_size, attention_mask)
logits_token = self.calculate_prob(token_embed_real)
if token_labels_real is not None:
loss_hinge = HingeLoss(ignore_index=pad_token_label_id[0].item()) # [self.tokentype_size-2, self.tokentype_size-1], self.tokentype_size-1==pad_token_label_id[0].item()
loss_token_hinge = loss_hinge(logits_token.view(-1, self.tokentype_size), token_labels_real.view(-1))
label_vec = self.label2vec(token_labels_real, self.tokentype_size)
_, pred_token = torch.max(logits_token, dim=2)
pred_vec = self.label2vec(pred_token, self.tokentype_size)
loss_token_energy = torch.max( torch.tensor([0, loss_token_hinge + self.token_energy_function(token_embed_real, label_vec) - self.token_energy_function(token_embed_real, pred_vec)], dtype=torch.float) )
# # ignore redundant padding tokens
logits_token = logits_token.view(-1, self.tokentype_size)
token_labels_real = token_labels_real.view(-1)
valid_token_indice = torch.nonzero(torch.ne(token_labels_real, pad_token_label_id[0].item()))[:, 0]
logits_token_valid = torch.zeros([valid_token_indice.size(0) + 2, self.tokentype_size], dtype=torch.float).to(device)
token_labels_real_valid = torch.zeros([valid_token_indice.size(0) + 2], dtype=torch.long).to(device)
logits_token_valid[[0, -1], :] = logits_token[[0, -1], :]
token_labels_real_valid[[0, -1]] = token_labels_real[[0, -1]]
if valid_token_indice.size(0) > 1:
logits_token_valid[1:-1, :] = logits_token[valid_token_indice, :]
token_labels_real_valid[1:-1] = token_labels_real[valid_token_indice]
else:
logits_token_valid = logits_token
token_labels_real_valid = token_labels_real
loss_fct = CrossEntropyLoss(ignore_index=pad_token_label_id[0].item())
loss_token_plus = loss_fct(logits_token.view(-1, self.tokentype_size), token_labels_real.view(-1))
loss_token = ENERGY_WEIGHT*loss_token_energy + self.ratio_loss_token_plus * loss_token_plus
return loss_token, logits_token_valid, token_labels_real_valid
class Sentence(nn.Module):
def __init__(self, proto_size, hidden_size, hidden_dropout_prob, ratio_loss_sent_plus):
super(Sentence, self).__init__()
self.dropout = nn.Dropout(hidden_dropout_prob)
self.maxpooling = nn.MaxPool1d(128)
self.prototypes = nn.Embedding(proto_size, hidden_size).to(device)
self.mat_local4sent = nn.Embedding(proto_size, hidden_size).to(device)
self.vec_label4sent = nn.Embedding(proto_size, 1).to(device)
self.mat_label4sent = nn.Embedding(proto_size, proto_size).to(device)
self.classifier = nn.Linear(hidden_size, proto_size)
self.proto_size = proto_size
self.hidden_size = hidden_size
self.ratio_loss_sent_plus = ratio_loss_sent_plus
def get_proto_embedding(self):
proto_embedding = self.prototypes(torch.tensor(range(0, self.proto_size)).to(device))
return proto_embedding # [proto_size, hidden_size]
def get_para_vec_mat(self, para_type):
mat_local4sent = self.mat_local4sent(torch.tensor(range(0, self.proto_size)).to(device))
vec_label4sent = self.vec_label4sent(torch.tensor(range(0, self.proto_size)).to(device))
mat_label4sent = self.mat_label4sent(torch.tensor(range(0, self.proto_size)).to(device))
if para_type == "mat_local":
return mat_local4sent
elif para_type == "vec_label":
return vec_label4sent
else:
return mat_label4sent
def __dist__(self, x, y, dim):
dist = torch.pow(x - y, 2).sum(dim)
# dist = torch.where(torch.isnan(dist), torch.full_like(dist, 1e-8), dist)
return dist
def __batch_dist__(self, S, Q):
return self.__dist__(S.unsqueeze(0), Q.unsqueeze(1), 2)
def measurement(self, r, p, x):
return - torch.max( [0, self.__dist__(p, x, 2) - r] )
def batch_measurement(self, r, P, X):
batch_size = X.size(0)
proto_size = P.size(0)
return - torch.maximum(torch.zeros([batch_size, proto_size]).to(device), self.__dist__(P.unsqueeze(0), X.unsqueeze(1), 2) - r)
def calculate_prob(self, r, P, X):
return F.softmax(self.batch_measurement(r, P, X))
# return self.batch_measurement(r, P, X)
def label2vec(self, label, label_size):
batch_size = label.size(0)
label_vec = torch.zeros([batch_size, label_size]).to(device)
for i in range(batch_size):
label_vec[i][label[i]] = 1
return label_vec
def sent_energy_function(self, sent_emb, sent_y):
sent_local_energy_temp = torch.matmul(self.get_para_vec_mat("mat_local"), sent_emb.transpose(0, 1))
sent_local_energy = torch.sum(torch.mul(sent_y, sent_local_energy_temp.transpose(0, 1)))
sent_label_energy = torch.sum(torch.matmul(self.get_para_vec_mat("vec_label").transpose(0, 1), torch.sigmoid(torch.matmul(self.get_para_vec_mat("mat_label"), sent_y.transpose(0, 1)))))
sent_energy = sent_local_energy + sent_label_energy
return sent_energy
def get_the_real_sent_task(self, sent_embed, sent_labels, mention_size):
batch_size = sent_embed.size(0)
max_mention_size = sent_embed.size(1)
hidden_size = sent_embed.size(2)
num_mention = 0
norm_mention_size = [max_mention_size] * batch_size
for i in range(batch_size):
norm_mention_size[i] = min(mention_size[i].item(), max_mention_size)
num_mention += norm_mention_size[i]
sent_embed_real = torch.zeros([num_mention, hidden_size], dtype=torch.float).to(device)
sent_labels_real = torch.zeros([num_mention], dtype=torch.long).to(device)
count_mention = 0
for i in range(batch_size):
sent_embed_real[count_mention:count_mention+norm_mention_size[i], :] = sent_embed[i, :norm_mention_size[i], :]
sent_labels_real[count_mention:count_mention+norm_mention_size[i]] = sent_labels[i, :norm_mention_size[i]]
count_mention += norm_mention_size[i]
return sent_embed_real, sent_labels_real
def forward(self, sent_embed, sent_labels, mention_size):
sent_embed_real, sent_labels_real = self.get_the_real_sent_task(sent_embed, sent_labels, mention_size)
proto_embed = self.get_proto_embedding()
logits_sent = self.calculate_prob(1, proto_embed, sent_embed_real)
if sent_labels_real is not None:
loss_hinge = HingeLoss() # ignore_index=0
loss_sent_hinge = loss_hinge(logits_sent.view(-1, self.proto_size), sent_labels_real.view(-1))
label_vec = self.label2vec(sent_labels_real, self.proto_size)
loss_sent_energy = torch.max( torch.tensor([0, loss_sent_hinge + self.sent_energy_function(sent_embed_real, label_vec) - self.sent_energy_function(sent_embed_real, logits_sent)], dtype=torch.float) )
loss_fct = CrossEntropyLoss()
loss_sent_plus = loss_fct(logits_sent.view(-1, self.proto_size), sent_labels_real.view(-1))
loss_sent = ENERGY_WEIGHT*loss_sent_energy + self.ratio_loss_sent_plus * loss_sent_plus
return loss_sent, logits_sent, sent_labels_real, proto_embed
class Document(nn.Module):
def __init__(self, relation_size, hidden_size, hidden_dropout_prob, ratio_loss_doc_plus):
super(Document, self).__init__()
self.relation_size = relation_size
self.dropout = nn.Dropout(hidden_dropout_prob)
self.ratio_loss_doc_plus = ratio_loss_doc_plus
# self.ere_classifier = nn.Linear(hidden_size*4, relation_size)
self.dim_expand = 3 # 2, 3, 4
self.ere_classifier = nn.Linear(hidden_size*self.dim_expand, relation_size)
# hidden_dim = 200
# self.ere_classifier = nn.Sequential(
# nn.Linear(hidden_size*self.dim_expand, hidden_dim),
# nn.ReLU(),
# nn.Dropout(0.20),
# nn.Linear(hidden_dim, hidden_dim),
# nn.ReLU(),
# nn.Dropout(0.20),
# nn.Linear(hidden_dim, relation_size)
# )
self.ere_classifier_joint = nn.Linear(hidden_size*self.dim_expand, relation_size)
self.ere_classifier_temp_onto = nn.Linear(hidden_size*self.dim_expand, 1+3)
self.ere_classifier_causal_onto = nn.Linear(hidden_size*self.dim_expand, 1+2)
self.ere_classifier_sub_onto = nn.Linear(hidden_size*self.dim_expand, 1+3)
self.ere_classifier_temp_maven = nn.Linear(hidden_size*self.dim_expand, 1+6)
self.ere_classifier_causal_maven = nn.Linear(hidden_size*self.dim_expand, 1+2)
self.ere_classifier_sub_maven = nn.Linear(hidden_size*self.dim_expand, 1+1)
self.ere_classifier_corref_maven = nn.Linear(hidden_size*self.dim_expand, 1+1)
self.mat_local4doc = nn.Embedding(relation_size, hidden_size*self.dim_expand).to(device)
self.vec_label4doc = nn.Embedding(relation_size, 1).to(device)
self.mat_label4doc = nn.Embedding(relation_size, relation_size).to(device)
def get_para_vec_mat(self, para_type, list_ids):
# list_ids = list(range(0, self.relation_size))
mat_local4doc = self.mat_local4doc(torch.tensor(list_ids).to(device))
vec_label4doc = self.vec_label4doc(torch.tensor(list_ids).to(device))
mat_label4doc = self.mat_label4doc(torch.tensor(list_ids).to(device))[:, list_ids]
if para_type == "mat_local":
return mat_local4doc
elif para_type == "vec_label":
return vec_label4doc
else:
return mat_label4doc
def get_embedding_interaction(self, t1, t2):
if self.dim_expand == 2:
return torch.cat([t1, t2], dim=0)
elif self.dim_expand == 3:
return torch.cat([t1, t2, torch.mul(t1, t2)], dim=0) # we choose this one
elif self.dim_expand == 4:
return torch.cat([t1, t2, torch.mul(t1, t2), t1 - t2], dim=0)
def label2vec(self, label, label_size):
batch_size = label.size(0)
label_vec = torch.zeros([batch_size, label_size]).to(device)
for i in range(batch_size):
label_vec[i][label[i]] = 1
return label_vec
def doc_energy_function(self, X, Y, list_ids):
doc_local_energy_temp = torch.matmul(self.get_para_vec_mat("mat_local", list_ids), X.transpose(0, 1))
doc_local_energy = torch.sum(torch.mul(Y, doc_local_energy_temp.transpose(0, 1)))
doc_label_energy = torch.sum(torch.matmul(self.get_para_vec_mat("vec_label", list_ids).transpose(0, 1), torch.sigmoid(torch.matmul(self.get_para_vec_mat("mat_label", list_ids), Y.transpose(0, 1)))))
doc_energy = doc_local_energy + doc_label_energy
return doc_energy
def get_event_re_task(self, sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type):
batch_size = sent_embed.size(0)
max_mention_size = sent_embed.size(1)
hidden_size = sent_embed.size(2)
num_rel = self.relation_size
num_mention = 0
num_mention_pair = 0
norm_mention_size = [max_mention_size] * batch_size
for i in range(batch_size):
norm_mention_size[i] = min(mention_size[i].item(), max_mention_size)
num_mention += norm_mention_size[i]
if norm_mention_size[i] != 1:
num_mention_pair += norm_mention_size[i] * (norm_mention_size[i] - 1)
else:
num_mention_pair += 1
inputs_sentpair = torch.zeros([num_mention_pair, hidden_size*self.dim_expand], dtype=torch.float).to(device)
labels_sentpair = torch.zeros([num_mention_pair], dtype=torch.long).to(device)
count_example_pair = 0
for k in range(batch_size):
num_mention_one_doc = norm_mention_size[k]
if num_mention_one_doc != 1:
for i in range(num_mention_one_doc):
for j in range(num_mention_one_doc):
if i != j:
inputs_sentpair[count_example_pair] = self.get_embedding_interaction(sent_embed[k][i], sent_embed[k][j])
labels_sentpair[count_example_pair] = mat_rel_label[k][i][j].item()
count_example_pair += 1
else:
inputs_sentpair[count_example_pair] = self.get_embedding_interaction(sent_embed[k][0], sent_embed[k][0])
labels_sentpair[count_example_pair] = mat_rel_label[k][0][0].item()
count_example_pair += 1
if doc_ere_task_type == "doc_all":
return inputs_sentpair, labels_sentpair
else:
if task_name == "ontoevent-doc":
labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub = self.labels_sentpair_rebuilt(labels_sentpair, task_name)
return inputs_sentpair, labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub
elif task_name == "maven-ere":
labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub, labels_sentpair_corref = self.labels_sentpair_rebuilt(labels_sentpair, task_name)
return inputs_sentpair, labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub, labels_sentpair_corref
def labels_sentpair_rebuilt(self, labels_sentpair, task_name):
# rebuild the labels_sentpair for different ere task on different dataset
labels_sentpair_temporal = labels_sentpair.clone()
labels_sentpair_causal = labels_sentpair.clone()
labels_sentpair_sub = labels_sentpair.clone()
labels_sentpair_corref = labels_sentpair.clone()
label_size = labels_sentpair.size(0)
if task_name == "maven-ere":
for i in range(label_size):
label = labels_sentpair[i].item()
if label not in list(range(1, 7)):
labels_sentpair_temporal[i] = 0
if label not in list(range(7, 9)):
labels_sentpair_causal[i] = 0
else:
labels_sentpair_causal[i] = labels_sentpair_causal[i] - 6
if label != 9:
labels_sentpair_sub[i] = 0
else:
labels_sentpair_sub[i] = labels_sentpair_sub[i] - 8
if label != 10:
labels_sentpair_corref[i] = 0
else:
labels_sentpair_corref[i] = labels_sentpair_corref[i] - 9
return labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub, labels_sentpair_corref
elif task_name == "ontoevent-doc":
for i in range(label_size):
label = labels_sentpair[i].item()
if label not in list(range(1, 4)):
labels_sentpair_temporal[i] = 0
if label not in list(range(4, 6)):
labels_sentpair_causal[i] = 0
else:
labels_sentpair_causal[i] = labels_sentpair_causal[i] - 3
if label not in list(range(6, 9)):
labels_sentpair_sub[i] = 0
else:
labels_sentpair_sub[i] = labels_sentpair_sub[i] - 5
return labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub
def calculate_ere_loss(self, logits_ere, labels_ere, sentpair_emb, relation_size, list_ids, task_name, doc_ere_task_type):
if labels_ere is not None:
loss_hinge = HingeLoss() # ignore_index=0, num_classes=relation_size
loss_doc_hinge = loss_hinge(logits_ere.view(-1, relation_size), labels_ere.view(-1))
label_vec = self.label2vec(labels_ere, relation_size)
loss_doc_energy = torch.max( torch.tensor([0, loss_doc_hinge + self.doc_energy_function(sentpair_emb, label_vec, list_ids) - self.doc_energy_function(sentpair_emb, logits_ere, list_ids)], dtype=torch.float) )
if doc_ere_task_type == "doc_all" or (task_name == "ontoevent-doc" and doc_ere_task_type != "doc_causal"):
weight_tensor = torch.ones([relation_size]).to(device)
weight_tensor[0] = NA_REL_WEIGHT # as there are too many NA relations, we should decrease their weight in loss and focus more on valid labels' training
weight_tensor = weight_tensor / torch.sum(weight_tensor)
loss_fct = CrossEntropyLoss(weight=weight_tensor) # , ignore_index=0
# loss_fct = CrossEntropyLoss()
elif task_name == "ontoevent-doc" and doc_ere_task_type == "doc_causal":
weight_tensor = torch.ones([relation_size]).to(device)
weight_tensor[0] = NA_REL_WEIGHT / 2
weight_tensor = weight_tensor / torch.sum(weight_tensor)
loss_fct = CrossEntropyLoss(weight=weight_tensor) # , ignore_index=0
# loss_fct = CrossEntropyLoss()
else:
if task_name == "maven-ere":
weight_tensor = torch.ones([relation_size]).to(device)
if doc_ere_task_type == "doc_sub":
weight_tensor[0] = NA_REL_WEIGHT_SUB
elif doc_ere_task_type == "doc_temporal":
weight_tensor[0] = NA_REL_WEIGHT_TEMP
elif doc_ere_task_type == "doc_causal":
weight_tensor[0] = NA_REL_WEIGHT_CAUSAL
weight_tensor = weight_tensor / torch.sum(weight_tensor)
loss_fct = CrossEntropyLoss(weight=weight_tensor) # , ignore_index=0
loss_doc_plus = loss_fct(logits_ere.view(-1, relation_size)+1e-10, labels_ere.view(-1)) # +1e-10 to avoid nan in loss
loss_doc = ENERGY_WEIGHT*loss_doc_energy + self.ratio_loss_doc_plus*loss_doc_plus
return loss_doc
def forward(self, sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type):
if doc_ere_task_type == "doc_all":
sentpair_emb, labels_sentpair = self.get_event_re_task(sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type)
# logits_sentpair = self.ere_classifier(sentpair_emb) # F.softmax()
logits_sentpair_all = F.softmax(self.ere_classifier(sentpair_emb))
label_ids = list(range(0, self.relation_size))
loss_doc_all = self.calculate_ere_loss(logits_sentpair_all, labels_sentpair, sentpair_emb, self.relation_size, label_ids, task_name, doc_ere_task_type)
return loss_doc_all, logits_sentpair_all, labels_sentpair
if task_name == "maven-ere":
ratio_temp = 1
ratio_causal = 2
ratio_sub = 2
ratio_corref = 0
size_temp = 1 + 6 # +1 for NA
size_causal = 1 + 2 # +1 for NA
size_sub = 1 + 1 # +1 for NA
size_corref = 1 + 1 # +1 for NA
label_temp_ids = list(range(0, size_temp))
label_causal_ids = [0, 7, 8]
label_sub_ids = [0, 9]
label_corref_ids = [0, 10]
inputs_sentpair, labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub, labels_sentpair_corref = self.get_event_re_task(sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type)
if doc_ere_task_type == "doc_temporal":
logits_sentpair_temp = F.softmax(self.ere_classifier_temp_maven(inputs_sentpair))
loss_doc_temp = self.calculate_ere_loss(logits_sentpair_temp, labels_sentpair_temporal, inputs_sentpair, size_temp, label_temp_ids, task_name, doc_ere_task_type)
return loss_doc_temp, logits_sentpair_temp, labels_sentpair_temporal
elif doc_ere_task_type == "doc_causal":
logits_sentpair_causal = F.softmax(self.ere_classifier_causal_maven(inputs_sentpair))
loss_doc_causal = self.calculate_ere_loss(logits_sentpair_causal, labels_sentpair_causal, inputs_sentpair, size_causal, label_causal_ids, task_name, doc_ere_task_type)
return loss_doc_causal, logits_sentpair_causal, labels_sentpair_causal
elif doc_ere_task_type == "doc_sub":
logits_sentpair_sub = F.softmax(self.ere_classifier_sub_maven(inputs_sentpair))
loss_doc_sub = self.calculate_ere_loss(logits_sentpair_sub, labels_sentpair_sub, inputs_sentpair, size_sub, label_sub_ids, task_name, doc_ere_task_type)
return loss_doc_sub, logits_sentpair_sub, labels_sentpair_sub
elif doc_ere_task_type == "doc_corref":
logits_sentpair_corref = F.softmax(self.ere_classifier_corref_maven(inputs_sentpair))
loss_doc_corref = self.calculate_ere_loss(logits_sentpair_corref, labels_sentpair_corref, inputs_sentpair, size_corref, label_corref_ids, task_name, doc_ere_task_type)
return loss_doc_corref, logits_sentpair_corref, labels_sentpair_corref
elif doc_ere_task_type == "doc_joint":
logits_sentpair_temp = F.softmax(self.ere_classifier_temp_maven(inputs_sentpair))
logits_sentpair_causal = F.softmax(self.ere_classifier_causal_maven(inputs_sentpair))
logits_sentpair_sub = F.softmax(self.ere_classifier_sub_maven(inputs_sentpair))
logits_sentpair_corref = F.softmax(self.ere_classifier_corref_maven(inputs_sentpair))
loss_doc_temp = self.calculate_ere_loss(logits_sentpair_temp, labels_sentpair_temporal, inputs_sentpair, size_temp, label_temp_ids, task_name, "doc_temporal")
loss_doc_causal = self.calculate_ere_loss(logits_sentpair_causal, labels_sentpair_causal, inputs_sentpair, size_causal, label_causal_ids, task_name, "doc_causal")
loss_doc_sub = self.calculate_ere_loss(logits_sentpair_sub, labels_sentpair_sub, inputs_sentpair, size_sub, label_sub_ids, task_name, "doc_sub")
loss_doc_corref = self.calculate_ere_loss(logits_sentpair_corref, labels_sentpair_corref, inputs_sentpair, size_corref, label_corref_ids, task_name, "doc_corref")
loss_doc_joint = ratio_temp*loss_doc_temp + ratio_causal*loss_doc_causal + ratio_sub*loss_doc_sub + ratio_corref*loss_doc_corref
return loss_doc_joint, logits_sentpair_temp, labels_sentpair_temporal, logits_sentpair_causal, labels_sentpair_causal, logits_sentpair_sub, labels_sentpair_sub, logits_sentpair_corref, labels_sentpair_corref
elif task_name == "ontoevent-doc":
ratio_temp = 3
ratio_causal = 1
ratio_sub = 0
size_temp = 1 + 3 # +1 for NA
size_causal = 1 + 2 # +1 for NA
size_sub = 1 + 3 # +1 for NA
label_temp_ids = list(range(0, size_temp))
label_causal_ids = [0, 4, 5]
label_sub_ids = [0, 6, 7, 8]
inputs_sentpair, labels_sentpair_temporal, labels_sentpair_causal, labels_sentpair_sub = self.get_event_re_task(sent_embed, mat_rel_label, mention_size, task_name, doc_ere_task_type)
if doc_ere_task_type == "doc_temporal":
logits_sentpair_temp = F.softmax(self.ere_classifier_temp_onto(inputs_sentpair))
loss_doc_temp = self.calculate_ere_loss(logits_sentpair_temp, labels_sentpair_temporal, inputs_sentpair, size_temp, label_temp_ids, task_name, doc_ere_task_type)
return loss_doc_temp, logits_sentpair_temp, labels_sentpair_temporal
elif doc_ere_task_type == "doc_causal":
logits_sentpair_causal = F.softmax(self.ere_classifier_causal_onto(inputs_sentpair))
loss_doc_causal = self.calculate_ere_loss(logits_sentpair_causal, labels_sentpair_causal, inputs_sentpair, size_causal, label_causal_ids, task_name, doc_ere_task_type)
return loss_doc_causal, logits_sentpair_causal, labels_sentpair_causal
elif doc_ere_task_type == "doc_sub":
logits_sentpair_sub = F.softmax(self.ere_classifier_sub_onto(inputs_sentpair))
loss_doc_sub = self.calculate_ere_loss(logits_sentpair_sub, labels_sentpair_sub, inputs_sentpair, size_sub, label_sub_ids, task_name, doc_ere_task_type)
return loss_doc_sub, logits_sentpair_sub, labels_sentpair_sub
elif doc_ere_task_type == "doc_joint":
logits_sentpair_temp = F.softmax(self.ere_classifier_temp_onto(inputs_sentpair))
logits_sentpair_causal = F.softmax(self.ere_classifier_causal_onto(inputs_sentpair))
logits_sentpair_sub = F.softmax(self.ere_classifier_sub_onto(inputs_sentpair))
loss_doc_temp = self.calculate_ere_loss(logits_sentpair_temp, labels_sentpair_temporal, inputs_sentpair, size_temp, label_temp_ids, task_name, "doc_temporal")
loss_doc_causal = self.calculate_ere_loss(logits_sentpair_causal, labels_sentpair_causal, inputs_sentpair, size_causal, label_causal_ids, task_name, "doc_causal")
loss_doc_sub = self.calculate_ere_loss(logits_sentpair_sub, labels_sentpair_sub, inputs_sentpair, size_sub, label_sub_ids, task_name, "doc_sub")
loss_doc_joint = ratio_temp*loss_doc_temp + ratio_causal*loss_doc_causal + ratio_sub*loss_doc_sub
return loss_doc_joint, logits_sentpair_temp, labels_sentpair_temporal, logits_sentpair_causal, labels_sentpair_causal, logits_sentpair_sub, labels_sentpair_sub