-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.sh
29 lines (22 loc) · 1.37 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# SAT-NoiLIn with symmetric-flipping noisy labels using ResNet-18
python SAT-NoiLIn.py --dataset='cifar10' --noise_type='symmetric'
python SAT-NoiLIn.py --dataset='cifar100' --noise_type='symmetric'
python SAT-NoiLIn.py --dataset='svhn' --noise_type='symmetric'
# SAT-NoiLIn with symmetric-flipping noisy labels using WRN-32-10
python SAT-NoiLIn.py --dataset='cifar10' --noise_type='symmetric' --net="WRN_madry"
# TRADES-NoiLIn with symmetric-flipping noisy labels using ResNet-18
python TRADES-NoiLIn.py --dataset='cifar10' --noise_type='symmetric'
python TRADES-NoiLIn.py --dataset='cifar100' --noise_type='symmetric'
python TRADES-NoiLIn.py --dataset='svhn' --noise_type='symmetric'
# TRADES-NoiLIn with symmetric-flipping noisy labels using WRN-34-10
python TRADES-NoiLIn.py --dataset='cifar10' --noise_type='symmetric' --net="WRN"
# TRADES-AWP-NoiLIn with symmetric-flipping noisy labels using WRN-34-10
cd TRADES-AWP-NoiLIn
python TRADES-AWP-NoiLIn.py
# SAT-NoiLIn with extra training data using WRN-28-10
cd NoiLIn_ExtraData
python SAT-NoiLIn-ExtraData.py --gpu='0,1,2,3' --aux_data_filename='ti_500K_pseudo_labeled.pickle'
# Obtain the learning curve of natural and robust accuracy
python eval.py --all_epoch --start_epoch=1 --end_epoch=120 --model_dir='model_dir'
# Obtain natural and robust accuracy of a given model
python eval.py --model_dir='model_dir' --pt_name='model_pt_name'