-
Notifications
You must be signed in to change notification settings - Fork 7
/
llama.py
289 lines (236 loc) · 10.3 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copy from llama's codebase
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Optional, Tuple
from dataclasses import dataclass
import math
import torch
from torch import nn
import torch.nn.functional as F
@dataclass
class ModelArgs:
dim: int = 512
n_layers: int = 8
n_heads: int = 8
vocab_size: int = -1 # defined later by tokenizer
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
norm_eps: float = 1e-5
max_batch_size: int = 32
max_seq_len: int = 2048
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class Attention(nn.Module):
""" Change the AR interfaces by removing the cache tensors.
Remove the rotary positional embedding.
"""
def __init__(self, config):
super().__init__()
self.n_local_heads = config['n_heads']
self.head_dim = config['dim'] // config['n_heads']
self.wq = nn.Linear(
config['dim'],
config['n_heads'] * self.head_dim,
bias=False,
)
self.wv = nn.Linear(
config['dim'],
config['n_heads'] * self.head_dim,
bias=False,
)
self.wk = nn.Linear(
config['dim'],
config['n_heads'] * self.head_dim,
bias=False,
)
self.wo = nn.Linear(
config['n_heads'] * self.head_dim,
config['dim'],
bias=False,
)
def forward(self, x: torch.Tensor):
""" Attention between the agents and the lanes
Args:
x (torch.Tensor): features of the tokens, bsz x node_num x dim
mask (Torch.Tensor): whether the token is valid, bsz x node_num x node_num
Return:
feats (torch.Tensor): features of the tokens, bsz x node_num x dim
"""
bsz, token_num, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, token_num, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, token_num, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, token_num, self.n_local_heads, self.head_dim)
keys = xk.transpose(1, 2)
values = xv.transpose(1, 2)
queries = xq.transpose(1, 2)
scores = torch.matmul(queries, keys.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
output = torch.matmul(scores, values).transpose(1, 2).contiguous().view(bsz, token_num, -1)
return self.wo(output)
def forward_llama(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
keys = self.cache_k[:bsz, : start_pos + seqlen]
values = self.cache_v[:bsz, : start_pos + seqlen]
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
output = output.transpose(
1, 2
).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(
dim, hidden_dim, bias=False,
#gather_output=False, init_method=lambda x: x
)
self.w2 = nn.Linear(
hidden_dim, dim, bias=False,
#input_is_parallel=True, init_method=lambda x: x
)
self.w3 = nn.Linear(
dim, hidden_dim, bias=False,
#gather_output=False, init_method=lambda x: x
)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
""" Change the AR interfaces by removing the cache tensors.
Remove the rotary positional embedding.
"""
def __init__(self, layer_id: int, config):
super().__init__()
self.n_heads = config['n_heads']
self.dim = config['dim']
self.head_dim = self.dim // self.n_heads
self.attention = Attention(config)
self.feed_forward = FeedForward(
dim=self.dim, hidden_dim=4 * self.dim, multiple_of=config['multiple_of']
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(self.dim, eps=config['norm_eps'])
self.ffn_norm = RMSNorm(self.dim, eps=config['norm_eps'])
def forward(self, x: torch.Tensor):
h = x + self.attention.forward(self.attention_norm(x))
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
def forward_llama(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class LLaMATransformer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# self.vocab_size = params.vocab_size
self.n_layers = config['n_layers']
self.first_layer = config['first_layer']
# self.tok_embeddings = ParallelEmbedding(
# params.vocab_size, params.dim, init_method=lambda x: x
# )
self.layers = torch.nn.ModuleList()
for layer_id in range(self.first_layer, self.n_layers):
self.layers.append(TransformerBlock(layer_id, config))
self.norm = RMSNorm(config['dim'], eps=config['norm_eps'])
# self.output = ColumnParallelLinear(
# config['dim'], config['dim'], bias=False, init_method=lambda x: x
# )
# self.freqs_cis = precompute_freqs_cis(
# self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
# )
# work-around for PEFT, Huggingface
self.prepare_inputs_for_generation = None
# @torch.inference_mode()
def forward(self, tokens: torch.Tensor):
bsz, token_num, hidden_dim = tokens.shape
h = tokens
for layer in self.layers:
h = layer(h)
h = self.norm(h)
return h.float()
def custom_load_state_dict(self, checkpoint, tail=False, strict=False):
# self.load_state_dict(checkpoint, strict=strict)
# load the final layers
if tail:
for i in range(self.first_layer, self.n_layers):
layer_checkpoint_keys = [k for k in checkpoint.keys() if f'layers.{i}.' in k]
layer_checkpoint_keys = [k.replace(f'layers.{i}.', '') for k in layer_checkpoint_keys]
layer_checkpoint = {k: checkpoint[f'layers.{i}.{k}'] for k in layer_checkpoint_keys}
self.layers[i - self.first_layer].load_state_dict(
layer_checkpoint, strict=strict)
return
@torch.inference_mode()
def forward_llama(self, tokens: torch.Tensor, start_pos: int):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
mask = None
if seqlen > 1:
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
if self.adapter:
adapter_index = 0
adapter = self.adapter_query.weight.reshape(-1, self.adapter_len, 4096).unsqueeze(1)
for layer in self.layers:
if not self.use_adapter:
h = layer(h, start_pos, freqs_cis, mask)
else:
h = layer(h, start_pos, freqs_cis, mask, adapter[adapter_index])
adapter_index += 1
h = self.norm(h)
output = self.output(h[:, -1, :]) # only compute last logits
return output.float()