-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmodel.py
186 lines (161 loc) · 9.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn.functional as F
from torch import nn
from resnext import ResNeXt101
class _AttentionModule(nn.Module):
def __init__(self):
super(_AttentionModule, self).__init__()
self.block1 = nn.Sequential(
nn.Conv2d(64, 64, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 64, 3, dilation=2, padding=2, groups=32, bias=False), nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 64, 1, bias=False), nn.BatchNorm2d(64)
)
self.block2 = nn.Sequential(
nn.Conv2d(64, 64, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 64, 3, dilation=3, padding=3, groups=32, bias=False), nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 64, 1, bias=False), nn.BatchNorm2d(64)
)
self.block3 = nn.Sequential(
nn.Conv2d(64, 64, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 64, 3, dilation=4, padding=4, groups=32, bias=False), nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.down = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32)
)
def forward(self, x):
block1 = F.relu(self.block1(x) + x, True)
block2 = F.relu(self.block2(block1) + block1, True)
block3 = F.sigmoid(self.block3(block2) + self.down(block2))
return block3
class BDRAR(nn.Module):
def __init__(self):
super(BDRAR, self).__init__()
resnext = ResNeXt101()
self.layer0 = resnext.layer0
self.layer1 = resnext.layer1
self.layer2 = resnext.layer2
self.layer3 = resnext.layer3
self.layer4 = resnext.layer4
self.down4 = nn.Sequential(
nn.Conv2d(2048, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU()
)
self.down3 = nn.Sequential(
nn.Conv2d(1024, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU()
)
self.down2 = nn.Sequential(
nn.Conv2d(512, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU()
)
self.down1 = nn.Sequential(
nn.Conv2d(256, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU()
)
self.refine3_hl = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1, groups=32, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.refine2_hl = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1, groups=32, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.refine1_hl = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1, groups=32, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.attention3_hl = _AttentionModule()
self.attention2_hl = _AttentionModule()
self.attention1_hl = _AttentionModule()
self.refine2_lh = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1, groups=32, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.refine4_lh = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1, groups=32, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.refine3_lh = nn.Sequential(
nn.Conv2d(64, 32, 1, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1, groups=32, bias=False), nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 32, 1, bias=False), nn.BatchNorm2d(32)
)
self.attention2_lh = _AttentionModule()
self.attention3_lh = _AttentionModule()
self.attention4_lh = _AttentionModule()
self.fuse_attention = nn.Sequential(
nn.Conv2d(64, 16, 3, padding=1, bias=False), nn.BatchNorm2d(16), nn.ReLU(),
nn.Conv2d(16, 2, 1)
)
self.predict = nn.Sequential(
nn.Conv2d(32, 8, 3, padding=1, bias=False), nn.BatchNorm2d(8), nn.ReLU(),
nn.Dropout(0.1), nn.Conv2d(8, 1, 1)
)
for m in self.modules():
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
layer0 = self.layer0(x)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
down4 = self.down4(layer4)
down3 = self.down3(layer3)
down2 = self.down2(layer2)
down1 = self.down1(layer1)
down4 = F.upsample(down4, size=down3.size()[2:], mode='bilinear')
refine3_hl_0 = F.relu(self.refine3_hl(torch.cat((down4, down3), 1)) + down4, True)
refine3_hl_0 = (1 + self.attention3_hl(torch.cat((down4, down3), 1))) * refine3_hl_0
refine3_hl_1 = F.relu(self.refine3_hl(torch.cat((refine3_hl_0, down3), 1)) + refine3_hl_0, True)
refine3_hl_1 = (1 + self.attention3_hl(torch.cat((refine3_hl_0, down3), 1))) * refine3_hl_1
refine3_hl_1 = F.upsample(refine3_hl_1, size=down2.size()[2:], mode='bilinear')
refine2_hl_0 = F.relu(self.refine2_hl(torch.cat((refine3_hl_1, down2), 1)) + refine3_hl_1, True)
refine2_hl_0 = (1 + self.attention2_hl(torch.cat((refine3_hl_1, down2), 1))) * refine2_hl_0
refine2_hl_1 = F.relu(self.refine2_hl(torch.cat((refine2_hl_0, down2), 1)) + refine2_hl_0, True)
refine2_hl_1 = (1 + self.attention2_hl(torch.cat((refine2_hl_0, down2), 1))) * refine2_hl_1
refine2_hl_1 = F.upsample(refine2_hl_1, size=down1.size()[2:], mode='bilinear')
refine1_hl_0 = F.relu(self.refine1_hl(torch.cat((refine2_hl_1, down1), 1)) + refine2_hl_1, True)
refine1_hl_0 = (1 + self.attention1_hl(torch.cat((refine2_hl_1, down1), 1))) * refine1_hl_0
refine1_hl_1 = F.relu(self.refine1_hl(torch.cat((refine1_hl_0, down1), 1)) + refine1_hl_0, True)
refine1_hl_1 = (1 + self.attention1_hl(torch.cat((refine1_hl_0, down1), 1))) * refine1_hl_1
down2 = F.upsample(down2, size=down1.size()[2:], mode='bilinear')
refine2_lh_0 = F.relu(self.refine2_lh(torch.cat((down1, down2), 1)) + down1, True)
refine2_lh_0 = (1 + self.attention2_lh(torch.cat((down1, down2), 1))) * refine2_lh_0
refine2_lh_1 = F.relu(self.refine2_lh(torch.cat((refine2_lh_0, down2), 1)) + refine2_lh_0, True)
refine2_lh_1 = (1 + self.attention2_lh(torch.cat((refine2_lh_0, down2), 1))) * refine2_lh_1
down3 = F.upsample(down3, size=down1.size()[2:], mode='bilinear')
refine3_lh_0 = F.relu(self.refine3_lh(torch.cat((refine2_lh_1, down3), 1)) + refine2_lh_1, True)
refine3_lh_0 = (1 + self.attention3_lh(torch.cat((refine2_lh_1, down3), 1))) * refine3_lh_0
refine3_lh_1 = F.relu(self.refine3_lh(torch.cat((refine3_lh_0, down3), 1)) + refine3_lh_0, True)
refine3_lh_1 = (1 + self.attention3_lh(torch.cat((refine3_lh_0, down3), 1))) * refine3_lh_1
down4 = F.upsample(down4, size=down1.size()[2:], mode='bilinear')
refine4_lh_0 = F.relu(self.refine4_lh(torch.cat((refine3_lh_1, down4), 1)) + refine3_lh_1, True)
refine4_lh_0 = (1 + self.attention4_lh(torch.cat((refine3_lh_1, down4), 1))) * refine4_lh_0
refine4_lh_1 = F.relu(self.refine4_lh(torch.cat((refine4_lh_0, down4), 1)) + refine4_lh_0, True)
refine4_lh_1 = (1 + self.attention4_lh(torch.cat((refine4_lh_0, down4), 1))) * refine4_lh_1
refine3_hl_1 = F.upsample(refine3_hl_1, size=down1.size()[2:], mode='bilinear')
predict4_hl = self.predict(down4)
predict3_hl = self.predict(refine3_hl_1)
predict2_hl = self.predict(refine2_hl_1)
predict1_hl = self.predict(refine1_hl_1)
predict1_lh = self.predict(down1)
predict2_lh = self.predict(refine2_lh_1)
predict3_lh = self.predict(refine3_lh_1)
predict4_lh = self.predict(refine4_lh_1)
fuse_attention = F.sigmoid(self.fuse_attention(torch.cat((refine1_hl_1, refine4_lh_1), 1)))
fuse_predict = torch.sum(fuse_attention * torch.cat((predict1_hl, predict4_lh), 1), 1, True)
predict4_hl = F.upsample(predict4_hl, size=x.size()[2:], mode='bilinear')
predict3_hl = F.upsample(predict3_hl, size=x.size()[2:], mode='bilinear')
predict2_hl = F.upsample(predict2_hl, size=x.size()[2:], mode='bilinear')
predict1_hl = F.upsample(predict1_hl, size=x.size()[2:], mode='bilinear')
predict1_lh = F.upsample(predict1_lh, size=x.size()[2:], mode='bilinear')
predict2_lh = F.upsample(predict2_lh, size=x.size()[2:], mode='bilinear')
predict3_lh = F.upsample(predict3_lh, size=x.size()[2:], mode='bilinear')
predict4_lh = F.upsample(predict4_lh, size=x.size()[2:], mode='bilinear')
fuse_predict = F.upsample(fuse_predict, size=x.size()[2:], mode='bilinear')
if self.training:
return fuse_predict, predict1_hl, predict2_hl, predict3_hl, predict4_hl, predict1_lh, predict2_lh, predict3_lh, predict4_lh
return F.sigmoid(fuse_predict)