forked from pytorch/torchtitan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
checkpoint.py
501 lines (436 loc) · 19.7 KB
/
checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import enum
import functools
import os
import re
import shutil
import time
from dataclasses import dataclass, field
from io import BytesIO
from multiprocessing import get_context
from typing import Any, Dict, List, Union
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
import torch.nn as nn
from torch.distributed.checkpoint.state_dict import (
get_model_state_dict,
get_optimizer_state_dict,
set_model_state_dict,
set_optimizer_state_dict,
StateDictOptions,
)
from torch.distributed.checkpoint.stateful import Stateful
from torch.utils.data import DataLoader
from torchtitan.config_manager import JobConfig, TORCH_DTYPE_MAP
from torchtitan.logging import init_logger, logger
class IntervalType(enum.Enum):
SECONDS = enum.auto()
STEPS = enum.auto()
class AsyncMode(str, enum.Enum):
DISABLED = "disabled"
ASYNC = "async"
ASYNC_WITH_PINNED_MEM = "async_with_pinned_mem"
@dataclass
class TrainState(Stateful):
step: int = 0
global_avg_losses: List[float] = field(default_factory=list)
global_max_losses: List[float] = field(default_factory=list)
log_steps: List[int] = field(default_factory=list)
def state_dict(self) -> Dict[str, Any]:
# Only checkpoint global_avg_losses and global_max_losses per log frequency
# to avoid sync overhead in every iteration.
global_avg_losses_bytes = BytesIO()
torch.save(self.global_avg_losses, global_avg_losses_bytes)
global_max_losses_bytes = BytesIO()
torch.save(self.global_max_losses, global_max_losses_bytes)
log_steps_bytes = BytesIO()
torch.save(self.log_steps, log_steps_bytes)
return {
"step": torch.tensor(self.step, dtype=torch.int32),
"global_avg_losses": global_avg_losses_bytes,
"global_max_losses": global_max_losses_bytes,
"log_steps": log_steps_bytes,
}
def load_state_dict(self, state_dict) -> None:
self.step = state_dict["step"].item()
state_dict["global_avg_losses"].seek(0)
self.global_avg_losses = torch.load(
state_dict["global_avg_losses"], weights_only=False
)
state_dict["global_max_losses"].seek(0)
self.global_max_losses = torch.load(
state_dict["global_max_losses"], weights_only=False
)
state_dict["log_steps"].seek(0)
self.log_steps = torch.load(state_dict["log_steps"], weights_only=False)
class ModelWrapper(Stateful):
def __init__(self, model: Union[nn.Module, List[nn.Module]]) -> None:
self.model = [model] if isinstance(model, nn.Module) else model
def state_dict(self) -> Dict[str, Any]:
return {
k: v for sd in map(get_model_state_dict, self.model) for k, v in sd.items()
}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
func = functools.partial(
set_model_state_dict,
model_state_dict=state_dict,
options=StateDictOptions(strict=False),
)
list(map(func, self.model))
class OptimizerWrapper(Stateful):
def __init__(
self,
model: Union[nn.Module, List[nn.Module]],
optim: Union[torch.optim.Optimizer, List[torch.optim.Optimizer]],
) -> None:
self.model = [model] if isinstance(model, nn.Module) else model
self.optim = [optim] if isinstance(optim, torch.optim.Optimizer) else optim
def state_dict(self) -> Dict[str, Any]:
func = functools.partial(
get_optimizer_state_dict,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
return {k: v for sd in map(func, self.model, self.optim) for k, v in sd.items()}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
func = functools.partial(
set_optimizer_state_dict,
optim_state_dict=state_dict,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
list(map(func, self.model, self.optim))
class Terminate:
pass
class SaveDone:
pass
def checkpoint_mp(recv, send):
init_logger()
os.environ["MASTER_PORT"] = str(int(os.environ["MASTER_PORT"]) + 2)
os.environ["TORCHELASTIC_USE_AGENT_STORE"] = "False"
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
dist.init_process_group()
try:
while True:
logger.debug("Checkpoint background process is done.")
send.put(SaveDone())
logger.debug("Wait for the new state_dict.")
obj = recv.get()
logger.debug("Received the new state_dict.")
if isinstance(obj, Terminate):
logger.info("Terminating the checkpoint background process.")
return
assert isinstance(obj, tuple)
begin = time.monotonic()
state, checkpoint_id = obj
dcp.save(state, checkpoint_id=checkpoint_id)
logger.info(
"Finish saving the checkpoint in the background process in "
f"{time.monotonic() - begin:.2f} seconds."
)
finally:
logger.info("Destroying the process group.")
dist.destroy_process_group()
class CheckpointManager:
def __init__(
self,
dataloader: DataLoader,
model_parts: List[nn.Module],
optimizers: List[torch.optim.Optimizer],
lr_schedulers: List[torch.optim.lr_scheduler.LRScheduler],
states: Dict[str, Any],
job_config: JobConfig,
) -> None:
ckpt_config = job_config.checkpoint
self.enable_checkpoint = ckpt_config.enable_checkpoint
self.keep_latest_k = ckpt_config.keep_latest_k
if not self.enable_checkpoint:
return
"""
Note: Pipeline Parallelism and Virtual Stages
1. even for simple PP schedules, there is a separate optimizer each PP rank.
rank0's optimizer would have a param_group[0] which refers to layers.0 in the original model.
rank1's would _also_ have a param_group[0], since it's index based, but referring to layers.1.
When saving, these collide and one of them is lost. Then when reloading, only one stage can
restore its optimizer states, others will error.
The solution to this problem is optimizer flattening: it landed in #127071 and is enabled in TorchTitan
by passing the 'flatten_optimizer_state_dict' kwarg to DCP functions called in the OptimizerWrapper.
2. With complex PP schedules, we have multiple model chunks per pp rank. This compounds challenge (1) by also
requiring us to reason about multiple 'optim' objects locally.
We solve this in the Model and Optimizer wrapper classes by flattening the state dicts from each object
into one state dict before saving/loading. We rely on the individual state_dicts to not collide,
which is gauranteed for the model by correct pipeline splitting and for the optimizer by the flattening
support described in (1).
3. LR schedulers also index model states like optimizers and would need to be flattened properly to support
resharding. Unfortunately, the implementations of different lr_schedulers do not follow a clear pattern like
optimizers do, so it's hard to write a generic 'flattener' utility.
TODO: This is currently unsolved and needs a fix.
"""
assert len(model_parts) == len(
optimizers
), "Must pass one optimizer per model part"
assert len(model_parts) == len(
lr_schedulers
), "Must pass one lr_scheduler per model part"
self.states = states
self.states.update(
{
"model": ModelWrapper(model_parts),
"optimizer": OptimizerWrapper(model_parts, optimizers),
"dataloader": dataloader,
}
)
if len(lr_schedulers) == 1:
self.states["lr_scheduler"] = lr_schedulers[0]
else:
# For now, pipeline-parallel with looped schedules does not support resharding for lr_scheduler.
# It should only support saving and loading a distributed checkpoint with the same number of pp ranks
for idx, lr_scheduler in enumerate(lr_schedulers):
self.states[f"lr_scheduler_{idx}"] = lr_scheduler
self.folder = os.path.join(job_config.job.dump_folder, ckpt_config.folder)
self.interval_type = (
IntervalType.SECONDS
if ckpt_config.interval_type == "seconds"
else IntervalType.STEPS
)
self.interval = ckpt_config.interval
self.begin_time = 0
self.time_sync_work = None
self.time_sync_result = None
self.pg = dist.new_group(backend="gloo")
self.model_weights_only = ckpt_config.model_weights_only
self.export_dtype = TORCH_DTYPE_MAP[ckpt_config.export_dtype]
self.mp = None
async_mode = ckpt_config.async_mode.lower()
if async_mode == AsyncMode.DISABLED:
self.async_mode = AsyncMode.DISABLED
elif async_mode == AsyncMode.ASYNC:
self.async_mode = AsyncMode.ASYNC
self.async_future = None
elif async_mode == AsyncMode.ASYNC_WITH_PINNED_MEM:
self.async_mode = AsyncMode.ASYNC_WITH_PINNED_MEM
ctx = get_context("spawn")
self.mp_queue_send = ctx.Queue()
self.mp_queue_recv = ctx.Queue()
self.mp = ctx.Process(
target=checkpoint_mp,
args=(
self.mp_queue_send,
self.mp_queue_recv,
),
daemon=True,
)
self.mp.start()
self.cpu_offload_state_dict = None
self.staging = False
self.staging_id = None
self.staging_stream = torch.cuda.Stream()
else:
raise ValueError(f"Unkown checkpoint async_mode {ckpt_config.async_mode}")
logger.info(
f"Checkpointing active. Checkpoints will be loaded from and saved to {self.folder}"
)
def __del__(self):
if self.enable_checkpoint and self.mp and self.mp.is_alive():
self.mp_queue_send.put(Terminate())
self.mp.join()
def reset(self) -> None:
self.begin_time = time.monotonic()
def _create_checkpoint_id(self, step: int) -> str:
return os.path.join(self.folder, f"step-{step}")
def _save_last_step(self, curr_step: int) -> None:
# We only consider saving weights only at the end of the training. So
# this won't affect preemption and training resume. We also only allow
# dtype conversion when we are checkpoint model weights only and the
# current dtype is not the same as the export dtype at the end of the training.
if self.model_weights_only:
# We update self.states to keep the model only.
# After this update, self.states = {
# 'tok_embeddings.weight':...,
# 'layers.0.attention.wq.weight': ...
# }.
self.states = self.states["model"].state_dict()
# For now, we will manually pop the freqs_cis buffer, as we made this permanent
# temporarily and we don't want to include it in the exported state_dict.
# Context: https://github.com/pytorch/torchtitan/blob/main/torchtitan/models/llama/model.py#L348
self.states.pop("freqs_cis")
if self.export_dtype != torch.float32:
self.states = {
k: v.to(self.export_dtype) for k, v in self.states.items()
}
logger.info(
f"Saving a model weights only checkpoint in {self.export_dtype} "
f"at last step, step {curr_step}."
)
else:
logger.info(f"Saving a full checkpoint at last step, step {curr_step}.")
dcp.save(self.states, checkpoint_id=self._create_checkpoint_id(curr_step))
self.reset()
def _should_save(self, curr_step: int, force: bool = False) -> bool:
if not self.enable_checkpoint:
return False
if not force:
if self.interval_type == IntervalType.STEPS and not (
curr_step % self.interval == 0
):
return False
if self.interval_type == IntervalType.SECONDS:
time_sync_result = (time.monotonic() - self.begin_time) >= self.interval
self.time_sync_result = torch.tensor(int(time_sync_result))
if self.time_sync_work is None:
self.time_sync_work = dist.all_reduce(
self.time_sync_result, group=self.pg, async_op=True
)
return False
elif curr_step % 5 == 4:
self.time_sync_work.wait()
self.time_sync_work = None
time_sync_result = self.time_sync_result.item()
self.time_sync_result = None
if time_sync_result == 0:
return False
else:
return False
if self.time_sync_work:
self.time_sync_work.wait()
self.time_sync_work = None
self.time_sync_result = None
return True
def _async_wait(self) -> None:
if self.async_mode == AsyncMode.ASYNC_WITH_PINNED_MEM:
logger.debug(
f"Waiting for the background process to finish, {time.monotonic()=}.:.2f"
)
if not self.mp.is_alive():
raise RuntimeError("The checkpoint background process is dead.")
_ = self.mp_queue_recv.get()
elif self.async_mode == AsyncMode.ASYNC:
if self.async_future is not None:
self.async_future.result()
def _async_with_pinned_memory(self, checkpoint_id: str) -> None:
try:
from torch.distributed._state_dict_utils import (
_copy_state_dict,
_create_cpu_state_dict,
)
except ImportError as e:
raise ImportError(
"Please install the latest PyTorch nightly to use async checkpointing with pinned memory."
) from e
state_dict = dcp.state_dict_saver._stateful_to_state_dict(self.states)
if self.cpu_offload_state_dict is None:
logger.debug(f"Preparing the CPU memory, {time.monotonic()=}.:.2f")
self.cpu_offload_state_dict = _create_cpu_state_dict(
state_dict, pin_memory=True, share_memory=True
)
logger.debug(f"Staging the state_dict, {time.monotonic()=}.:.2f")
with torch.cuda.stream(self.staging_stream):
self.cpu_offload_state_dict = _copy_state_dict(
state_dict,
self.cpu_offload_state_dict,
non_blocking=True,
)
self.staging = True
self.staging_id = checkpoint_id
def save(self, curr_step: int, force: bool = False) -> None:
"""
force = True will force the checkpoint to be saved, even if the interval
has not been reached.
This only happens when train_state.step == job_config.training.steps, or
for initial seed checkpoint.
"""
if not self._should_save(curr_step, force):
return
begin = time.monotonic()
checkpoint_id = self._create_checkpoint_id(curr_step)
self._async_wait()
if force:
self._save_last_step(curr_step)
elif self.async_mode == AsyncMode.ASYNC_WITH_PINNED_MEM:
self._async_with_pinned_memory(checkpoint_id)
elif self.async_mode == AsyncMode.ASYNC:
self.async_future = dcp.async_save(
self.states, checkpoint_id=checkpoint_id, process_group=self.pg
)
else:
dcp.save(self.states, checkpoint_id=checkpoint_id)
self.reset()
self._purge_stale_checkpoints()
logger.info(
"Finished saving the checkpoint (or staging if async is enabled)"
f"in {time.monotonic() - begin:.2f} seconds."
)
def maybe_wait_for_staging(self) -> None:
if (
self.enable_checkpoint
and self.async_mode == AsyncMode.ASYNC_WITH_PINNED_MEM
and self.staging
):
if not self.staging_stream.query():
self.staging_stream.synchronize()
def sync_func():
self.mp_queue_send.put_nowait(
(self.cpu_offload_state_dict, self.staging_id)
)
# This may be a faster way to do zero-overhead checkpointing staging
# checkpointing but we need more thorough investigation before
# swithing to this method.
# self.my_thread = threading.Thread(target=func).start()
sync_func()
self.staging = False
def load(self, step: int = -1) -> bool:
if not self.enable_checkpoint:
return False
if not os.path.isdir(self.folder):
return False
if step != -1 and not os.path.isdir(self._create_checkpoint_id(step)):
return False
if step == -1:
step_counts = []
for filename in os.listdir(self.folder):
match = re.search(r"step-(\d+)", filename)
metadata_probe = os.path.join(self.folder, filename, ".metadata")
if match and os.path.isfile(metadata_probe):
step_counts.append(int(match.group(1)))
if not step_counts:
return False
step = max(step_counts)
# We won't have optimizer states to load, if we are loading a seed checkpoint
states = {"model": self.states["model"]} if step == 0 else self.states
# PyTorch bug: (pytorch/pytorch#138575)
# dcp.load() replaces the values of stateful elements in `states` with new objects
# from loading the checkpoint, in addition to updating the states of the original
# objects from `states` in-place. This is a problem because the state_dict no longer
# refers to the objects being used in the train loop, meaning any future checkpoints
# will not include updates to these objects (such as updated optimizer states, etc.)
original_stateful_states = {
k: v for k, v in states.items() if isinstance(v, Stateful)
}
logger.info(f"Loading the checkpoint at step {step}.")
begin = time.monotonic()
dcp.load(
states,
checkpoint_id=self._create_checkpoint_id(step),
)
logger.info(
f"Finished loading the checkpoint in {time.monotonic() - begin:.2f} seconds."
)
# bugfix from above: restore the original stateful objects,
# whose states were already updated in-place by dcp.load()
states.update(original_stateful_states)
return True
def _purge_stale_checkpoints(self):
if self.keep_latest_k > 0:
discovered_checkpoints = []
for filename in os.listdir(self.folder):
match = re.search(r"step-(\d+)", filename)
path = os.path.join(self.folder, filename)
discovered_checkpoints.append((int(match.group(1)), path))
discovered_checkpoints.sort()
to_delete = discovered_checkpoints[: -1 * self.keep_latest_k]
for _, path in to_delete:
logger.info(f"Deleting old checkpoint {path}")
shutil.rmtree(path, ignore_errors=True)