forked from xtaci/kcp-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fec.go
311 lines (271 loc) · 7.46 KB
/
fec.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
package kcp
import (
"encoding/binary"
"sync/atomic"
"github.com/klauspost/reedsolomon"
)
const (
fecHeaderSize = 6
fecHeaderSizePlus2 = fecHeaderSize + 2 // plus 2B data size
typeData = 0xf1
typeFEC = 0xf2
)
type (
// fecPacket is a decoded FEC packet
fecPacket struct {
seqid uint32
flag uint16
data []byte
}
// fecDecoder for decoding incoming packets
fecDecoder struct {
rxlimit int // queue size limit
dataShards int
parityShards int
shardSize int
rx []fecPacket // ordered receive queue
// caches
decodeCache [][]byte
flagCache []bool
// zeros
zeros []byte
// RS decoder
codec reedsolomon.Encoder
}
)
func newFECDecoder(rxlimit, dataShards, parityShards int) *fecDecoder {
if dataShards <= 0 || parityShards <= 0 {
return nil
}
if rxlimit < dataShards+parityShards {
return nil
}
dec := new(fecDecoder)
dec.rxlimit = rxlimit
dec.dataShards = dataShards
dec.parityShards = parityShards
dec.shardSize = dataShards + parityShards
codec, err := reedsolomon.New(dataShards, parityShards)
if err != nil {
return nil
}
dec.codec = codec
dec.decodeCache = make([][]byte, dec.shardSize)
dec.flagCache = make([]bool, dec.shardSize)
dec.zeros = make([]byte, mtuLimit)
return dec
}
// decodeBytes a fec packet
func (dec *fecDecoder) decodeBytes(data []byte) fecPacket {
var pkt fecPacket
pkt.seqid = binary.LittleEndian.Uint32(data)
pkt.flag = binary.LittleEndian.Uint16(data[4:])
// allocate memory & copy
buf := xmitBuf.Get().([]byte)[:len(data)-6]
copy(buf, data[6:])
pkt.data = buf
return pkt
}
// decode a fec packet
func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
// insertion
n := len(dec.rx) - 1
insertIdx := 0
for i := n; i >= 0; i-- {
if pkt.seqid == dec.rx[i].seqid { // de-duplicate
xmitBuf.Put(pkt.data)
return nil
} else if _itimediff(pkt.seqid, dec.rx[i].seqid) > 0 { // insertion
insertIdx = i + 1
break
}
}
// insert into ordered rx queue
if insertIdx == n+1 {
dec.rx = append(dec.rx, pkt)
} else {
dec.rx = append(dec.rx, fecPacket{})
copy(dec.rx[insertIdx+1:], dec.rx[insertIdx:]) // shift right
dec.rx[insertIdx] = pkt
}
// shard range for current packet
shardBegin := pkt.seqid - pkt.seqid%uint32(dec.shardSize)
shardEnd := shardBegin + uint32(dec.shardSize) - 1
// max search range in ordered queue for current shard
searchBegin := insertIdx - int(pkt.seqid%uint32(dec.shardSize))
if searchBegin < 0 {
searchBegin = 0
}
searchEnd := searchBegin + dec.shardSize - 1
if searchEnd >= len(dec.rx) {
searchEnd = len(dec.rx) - 1
}
// re-construct datashards
if searchEnd-searchBegin+1 >= dec.dataShards {
var numshard, numDataShard, first, maxlen int
// zero cache
shards := dec.decodeCache
shardsflag := dec.flagCache
for k := range dec.decodeCache {
shards[k] = nil
shardsflag[k] = false
}
// shard assembly
for i := searchBegin; i <= searchEnd; i++ {
seqid := dec.rx[i].seqid
if _itimediff(seqid, shardEnd) > 0 {
break
} else if _itimediff(seqid, shardBegin) >= 0 {
shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data
shardsflag[seqid%uint32(dec.shardSize)] = true
numshard++
if dec.rx[i].flag == typeData {
numDataShard++
}
if numshard == 1 {
first = i
}
if len(dec.rx[i].data) > maxlen {
maxlen = len(dec.rx[i].data)
}
}
}
if numDataShard == dec.dataShards {
// case 1: no lost data shards
dec.rx = dec.freeRange(first, numshard, dec.rx)
} else if numshard >= dec.dataShards {
// case 2: data shard lost, but recoverable from parity shard
for k := range shards {
if shards[k] != nil {
dlen := len(shards[k])
shards[k] = shards[k][:maxlen]
copy(shards[k][dlen:], dec.zeros)
}
}
if err := dec.codec.ReconstructData(shards); err == nil {
for k := range shards[:dec.dataShards] {
if !shardsflag[k] {
recovered = append(recovered, shards[k])
}
}
}
dec.rx = dec.freeRange(first, numshard, dec.rx)
}
}
// keep rxlimit
if len(dec.rx) > dec.rxlimit {
if dec.rx[0].flag == typeData { // record unrecoverable data
atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
}
dec.rx = dec.freeRange(0, 1, dec.rx)
}
return
}
// free a range of fecPacket, and zero for GC recycling
func (dec *fecDecoder) freeRange(first, n int, q []fecPacket) []fecPacket {
for i := first; i < first+n; i++ { // free
xmitBuf.Put(q[i].data)
}
copy(q[first:], q[first+n:])
for i := 0; i < n; i++ { // dereference data
q[len(q)-1-i].data = nil
}
return q[:len(q)-n]
}
type (
// fecEncoder for encoding outgoing packets
fecEncoder struct {
dataShards int
parityShards int
shardSize int
paws uint32 // Protect Against Wrapped Sequence numbers
next uint32 // next seqid
shardCount int // count the number of datashards collected
maxSize int // record maximum data length in datashard
headerOffset int // FEC header offset
payloadOffset int // FEC payload offset
// caches
shardCache [][]byte
encodeCache [][]byte
// zeros
zeros []byte
// RS encoder
codec reedsolomon.Encoder
}
)
func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
if dataShards <= 0 || parityShards <= 0 {
return nil
}
enc := new(fecEncoder)
enc.dataShards = dataShards
enc.parityShards = parityShards
enc.shardSize = dataShards + parityShards
enc.paws = (0xffffffff/uint32(enc.shardSize) - 1) * uint32(enc.shardSize)
enc.headerOffset = offset
enc.payloadOffset = enc.headerOffset + fecHeaderSize
codec, err := reedsolomon.New(dataShards, parityShards)
if err != nil {
return nil
}
enc.codec = codec
// caches
enc.encodeCache = make([][]byte, enc.shardSize)
enc.shardCache = make([][]byte, enc.shardSize)
for k := range enc.shardCache {
enc.shardCache[k] = make([]byte, mtuLimit)
}
enc.zeros = make([]byte, mtuLimit)
return enc
}
// encode the packet, output parity shards if we have enough datashards
// the content of returned parityshards will change in next encode
func (enc *fecEncoder) encode(b []byte) (ps [][]byte) {
enc.markData(b[enc.headerOffset:])
binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))
// copy data to fec datashards
sz := len(b)
enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
copy(enc.shardCache[enc.shardCount], b)
enc.shardCount++
// record max datashard length
if sz > enc.maxSize {
enc.maxSize = sz
}
// calculate Reed-Solomon Erasure Code
if enc.shardCount == enc.dataShards {
// bzero each datashard's tail
for i := 0; i < enc.dataShards; i++ {
shard := enc.shardCache[i]
slen := len(shard)
copy(shard[slen:enc.maxSize], enc.zeros)
}
// construct equal-sized slice with stripped header
cache := enc.encodeCache
for k := range cache {
cache[k] = enc.shardCache[k][enc.payloadOffset:enc.maxSize]
}
// rs encode
if err := enc.codec.Encode(cache); err == nil {
ps = enc.shardCache[enc.dataShards:]
for k := range ps {
enc.markFEC(ps[k][enc.headerOffset:])
ps[k] = ps[k][:enc.maxSize]
}
}
// reset counters to zero
enc.shardCount = 0
enc.maxSize = 0
}
return
}
func (enc *fecEncoder) markData(data []byte) {
binary.LittleEndian.PutUint32(data, enc.next)
binary.LittleEndian.PutUint16(data[4:], typeData)
enc.next++
}
func (enc *fecEncoder) markFEC(data []byte) {
binary.LittleEndian.PutUint32(data, enc.next)
binary.LittleEndian.PutUint16(data[4:], typeFEC)
enc.next = (enc.next + 1) % enc.paws
}