-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathmodel.py
173 lines (166 loc) · 7.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
Class Model: model for the deep clustering speech seperation
'''
import numpy as np
import ipdb
import tensorflow as tf
from GlobalConstont import *
# from ln_lstm import LayerNormalizedLSTMCell
# from bnlstm import BNLSTMCell
class Model(object):
def __init__(self, n_hidden, batch_size, p_keep_ff, p_keep_rc):
'''n_hidden: number of hidden states
p_keep_ff: forward keep probability
p_keep_rc: recurrent keep probability'''
self.n_hidden = n_hidden
self.batch_size = batch_size
# if training:
# self.p_keep_ff = 1 - P_DROPOUT_FF
# self.p_keep_rc = 1 - P_DROPOUT_RC
# else:
# self.p_keep_ff = 1
# self.p_keep_rc = 1
self.p_keep_ff = p_keep_ff
self.p_keep_rc = p_keep_rc
# biases and weights for the last layer
self.weights = {
'out': tf.Variable(
tf.random_normal([2 * n_hidden, EMBBEDDING_D * NEFF]))
}
self.biases = {
'out': tf.Variable(
tf.random_normal([EMBBEDDING_D * NEFF]))
}
def inference(self, x):
'''The structure of the network'''
# ipdb.set_trace()
# four layer of LSTM cell blocks
with tf.variable_scope('BLSTM1') as scope:
# lstm_fw_cell = tf.nn.rnn_cell.LSTMCell(
# self.n_hidden)
# lstm_bw_cell = tf.nn.rnn_cell.LSTMCell(
# self.n_hidden)
lstm_fw_cell = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_fw_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_fw_cell, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
lstm_bw_cell = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_bw_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_bw_cell, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
outputs, _ = tf.nn.bidirectional_dynamic_rnn(
lstm_fw_cell, lstm_bw_cell, x,
sequence_length=[FRAMES_PER_SAMPLE] * self.batch_size,
dtype=tf.float32)
state_concate = tf.concat(2, outputs)
with tf.variable_scope('BLSTM2') as scope:
# lstm_fw_cell2 = tf.nn.rnn_cell.LSTMCell(
# self.n_hidden)
# lstm_bw_cell2 = tf.nn.rnn_cell.LSTMCell(
# self.n_hidden)
lstm_fw_cell2 = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_fw_cell2 = tf.nn.rnn_cell.DropoutWrapper(
lstm_fw_cell2, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
lstm_bw_cell2 = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_bw_cell2 = tf.nn.rnn_cell.DropoutWrapper(
lstm_bw_cell2, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
outputs2, _ = tf.nn.bidirectional_dynamic_rnn(
lstm_fw_cell2, lstm_bw_cell2, state_concate,
sequence_length=[FRAMES_PER_SAMPLE] * self.batch_size,
dtype=tf.float32)
state_concate2 = tf.concat(2, outputs2)
with tf.variable_scope('BLSTM3') as scope:
lstm_fw_cell3 = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_fw_cell3 = tf.nn.rnn_cell.DropoutWrapper(
lstm_fw_cell3, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
lstm_bw_cell3 = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_bw_cell3 = tf.nn.rnn_cell.DropoutWrapper(
lstm_bw_cell3, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
outputs3, _ = tf.nn.bidirectional_dynamic_rnn(
lstm_fw_cell3, lstm_bw_cell3, state_concate2,
sequence_length=[FRAMES_PER_SAMPLE] * self.batch_size,
dtype=tf.float32)
state_concate3 = tf.concat(2, outputs3)
with tf.variable_scope('BLSTM4') as scope:
lstm_fw_cell4 = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_fw_cell4 = tf.nn.rnn_cell.DropoutWrapper(
lstm_fw_cell4, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
lstm_bw_cell4 = tf.contrib.rnn.LayerNormBasicLSTMCell(
self.n_hidden, layer_norm=False,
dropout_keep_prob=self.p_keep_rc)
lstm_bw_cell4 = tf.nn.rnn_cell.DropoutWrapper(
lstm_bw_cell4, input_keep_prob=1,
output_keep_prob=self.p_keep_ff)
outputs4, _ = tf.nn.bidirectional_dynamic_rnn(
lstm_fw_cell4, lstm_bw_cell4, state_concate3,
sequence_length=[FRAMES_PER_SAMPLE] * self.batch_size,
dtype=tf.float32)
state_concate4 = tf.concat(2, outputs4)
# one layer of embedding output with tanh activation function
out_concate = tf.reshape(state_concate4, [-1, self.n_hidden * 2])
emb_out = tf.matmul(out_concate,
self.weights['out']) + self.biases['out']
emb_out = tf.nn.tanh(emb_out)
reshaped_emb = tf.reshape(emb_out, [-1, NEFF, EMBBEDDING_D])
# normalization before output
normalized_emb = tf.nn.l2_normalize(reshaped_emb, 2)
return normalized_emb
def loss(self, embeddings, Y, VAD):
'''Defining the loss function'''
embeddings_rs = tf.reshape(embeddings, shape=[-1, EMBBEDDING_D])
VAD_rs = tf.reshape(VAD, shape=[-1])
# get the embeddings with active VAD
embeddings_rsv = tf.transpose(
tf.mul(tf.transpose(embeddings_rs), VAD_rs))
embeddings_v = tf.reshape(
embeddings_rsv, [-1, FRAMES_PER_SAMPLE * NEFF, EMBBEDDING_D])
# get the Y(speaker indicator function) with active VAD
Y_rs = tf.reshape(Y, shape=[-1, 2])
Y_rsv = tf.transpose(
tf.mul(tf.transpose(Y_rs), VAD_rs))
Y_v = tf.reshape(Y_rsv, shape=[-1, FRAMES_PER_SAMPLE * NEFF, 2])
# fast computation format of the embedding loss function
loss_batch = tf.nn.l2_loss(
tf.batch_matmul(tf.transpose(
embeddings_v, [0, 2, 1]), embeddings_v)) - \
2 * tf.nn.l2_loss(
tf.batch_matmul(tf.transpose(
embeddings_v, [0, 2, 1]), Y_v)) + \
tf.nn.l2_loss(
tf.batch_matmul(tf.transpose(
Y_v, [0, 2, 1]), Y_v))
loss_v = (loss_batch) / self.batch_size
tf.scalar_summary('loss', loss_v)
return loss_v
def train(self, loss, lr):
'''Optimizer'''
optimizer = tf.train.AdamOptimizer(
learning_rate=lr,
beta1=0.9,
beta2=0.999,
epsilon=1e-8)
# optimizer = tf.train.MomentumOptimizer(lr, 0.9)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 200)
train_op = optimizer.apply_gradients(
zip(gradients, v))
return train_op