-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpretrain_unknown_detection.py
132 lines (120 loc) · 5.3 KB
/
pretrain_unknown_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import os
import os.path as osp
from copy import deepcopy
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from sklearn.metrics import roc_auc_score
from torch.optim.lr_scheduler import MultiStepLR
from models import *
from utils import ensure_path, progress_bar
from models.utils import pprint, set_gpu, ensure_path, Averager, Timer, count_acc, compute_confidence_interval, one_hot,Identity
from torch.distributions import Categorical
import random
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if args.shmode==False:
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(closerloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if args.shmode==False:
progress_bar(batch_idx, len(closerloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
torch.save(state, osp.join(args.save_path,'ckpt.pth'))
best_acc = acc
if __name__=="__main__":
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--model_type', default='softmax', type=str, help='Recognition Method')
parser.add_argument('--backbone', default='WideResnet', type=str, help='Backbone type.')
parser.add_argument('--dataset', default='cifar10_relabel',type=str,help='dataset configuration')
parser.add_argument('--gpu', default='2',type=str,help='use gpu')
parser.add_argument('--known_class', default=6,type=int,help='number of known class')
parser.add_argument('--seed', default='9',type=int,help='random seed for dataset generation.')
parser.add_argument('--shmode',action='store_true')
args = parser.parse_args()
pprint(vars(args))
os.environ['CUDA_VISIBLE_DEVICES'] =args.gpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
print('==> Preparing data..')
if args.dataset=='cifar10_relabel':
from data.cifar10_relabel import CIFAR10 as Dataset
trainset=Dataset('train',seed=args.seed)
knownlist,unknownlist=trainset.known_class_show()
trainloader=torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4)
closeset=Dataset('testclose',seed=args.seed)
closerloader=torch.utils.data.DataLoader(closeset, batch_size=512, shuffle=True, num_workers=4)
openset=Dataset('testopen',seed=args.seed)
openloader=torch.utils.data.DataLoader(openset, batch_size=512, shuffle=True, num_workers=4)
print('==> Building model..')
if args.backbone=='WideResnet':
net=Wide_ResNet(28, 10, 0.3, args.known_class)
net = net.to(device)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,momentum=0.9, weight_decay=5e-4)
save_path1 = osp.join('results','D{}-M{}-B{}'.format(args.dataset,args.model_type, args.backbone,))
save_path2 = 'LR{}-K{}-U{}-Seed{}'.format(str(args.lr), knownlist,unknownlist,str(args.seed))
args.save_path = osp.join(save_path1, save_path2)
ensure_path(save_path1, remove=False)
ensure_path(args.save_path, remove=False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
np.random.seed(0)
random.seed(0)
scheduler = MultiStepLR(optimizer, milestones=[50,125], gamma=0.1)
for epoch in range(start_epoch, start_epoch+200):
scheduler.step()
train(epoch)
test(epoch)
if (epoch+1)%10==0:
state = {'net': net.state_dict(),'epoch': epoch,}
torch.save(state, osp.join(args.save_path,'Modelof_Epoch'+str(epoch)+'.pth'))