forked from junxia97/Mole-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vqvae.py
390 lines (339 loc) · 17.9 KB
/
vqvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import argparse
from loader import MoleculeDataset
from torch_geometric.data import DataLoader
from functools import partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
from model import GNN, DiscreteGNN, GNNDecoder
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split, random_split, random_scaffold_split
import pandas as pd
from util import MaskAtom
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool
from tensorboardX import SummaryWriter
criterion = nn.CrossEntropyLoss()
import timeit
NUM_NODE_ATTR = 119
NUM_NODE_CHIRAL = 4
NUM_BOND_ATTR = 4
class ExponentialMovingAverage(nn.Module):
"""Maintains an exponential moving average for a value.
This module keeps track of a hidden exponential moving average that is
initialized as a vector of zeros which is then normalized to give the average.
This gives us a moving average which isn't biased towards either zero or the
initial value. Reference (https://arxiv.org/pdf/1412.6980.pdf)
Initially:
hidden_0 = 0
Then iteratively:
hidden_i = hidden_{i-1} - (hidden_{i-1} - value) * (1 - decay)
average_i = hidden_i / (1 - decay^i)
"""
def __init__(self, init_value, decay):
super().__init__()
self.decay = decay
self.counter = 0
self.register_buffer("hidden", torch.zeros_like(init_value))
def forward(self, value):
self.counter += 1
self.hidden.sub_((self.hidden - value) * (1 - self.decay))
average = self.hidden / (1 - self.decay ** self.counter)
return average
class VectorQuantizerEMA(nn.Module):
"""
VQ-VAE layer: Input any tensor to be quantized. Use EMA to update embeddings.
Args:
embedding_dim (int): the dimensionality of the tensors in the
quantized space. Inputs to the modules must be in this format as well.
num_embeddings (int): the number of vectors in the quantized space.
commitment_cost (float): scalar which controls the weighting of the loss terms (see
equation 4 in the paper - this variable is Beta).
decay (float): decay for the moving averages.
epsilon (float): small float constant to avoid numerical instability.
"""
def __init__(self, embedding_dim, num_embeddings, commitment_cost, decay,
epsilon=1e-5):
super().__init__()
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.commitment_cost = commitment_cost
self.epsilon = epsilon
# initialize embeddings as buffers
embeddings = torch.empty(self.num_embeddings, self.embedding_dim)
nn.init.xavier_uniform_(embeddings)
self.register_buffer("embeddings", embeddings)
self.ema_dw = ExponentialMovingAverage(self.embeddings, decay)
# also maintain ema_cluster_size, which record the size of each embedding
self.ema_cluster_size = ExponentialMovingAverage(torch.zeros((self.num_embeddings,)), decay)
def forward(self, x):
encoding_indices = self.get_code_indices(x) # x: B * H, encoding_indices: B
quantized = self.quantize(encoding_indices)
quantized = quantized.view_as(x)
# update embeddings with EMA
with torch.no_grad():
encodings = F.one_hot(encoding_indices, self.num_embeddings).float()
updated_ema_cluster_size = self.ema_cluster_size(torch.sum(encodings, dim=0))
n = torch.sum(updated_ema_cluster_size)
updated_ema_cluster_size = ((updated_ema_cluster_size + self.epsilon) /
(n + self.num_embeddings * self.epsilon) * n)
dw = torch.matmul(encodings.t(), x) # sum encoding vectors of each cluster
updated_ema_dw = self.ema_dw(dw)
normalised_updated_ema_w = (
updated_ema_dw / updated_ema_cluster_size.reshape(-1, 1))
self.embeddings.data = normalised_updated_ema_w
# commitment loss
e_latent_loss = F.mse_loss(x, quantized.detach())
loss = self.commitment_cost * e_latent_loss
# Straight Through Estimator
quantized = x + (quantized - x).detach().contiguous()
print('commitment loss:', loss)
return quantized, loss
def get_code_indices(self, flat_x):
# compute L2 distance
distances = (
torch.sum(flat_x ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings ** 2, dim=1) -
2. * torch.matmul(flat_x, self.embeddings.t())
) # [N, M]
encoding_indices = torch.argmin(distances, dim=1) # [N,]
return encoding_indices
def quantize(self, encoding_indices):
"""Returns embedding tensor for a batch of indices."""
return F.embedding(encoding_indices, self.embeddings)
class VectorQuantizer(nn.Module):
"""
VQ-VAE layer: Input any tensor to be quantized.
Args:
embedding_dim (int): the dimensionality of the tensors in the
quantized space. Inputs to the modules must be in this format as well.
num_embeddings (int): the number of vectors in the quantized space.
commitment_cost (float): scalar which controls the weighting of the loss terms (see
equation 4 in the paper - this variable is Beta).
"""
def __init__(self, embedding_dim, num_embeddings, commitment_cost):
super().__init__()
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.commitment_cost = commitment_cost
# initialize embeddings
self.embeddings = nn.Embedding(self.num_embeddings, self.embedding_dim)
def forward(self, x, e):
encoding_indices = self.get_code_indices(x, e) # x: B * H, encoding_indices: B
quantized = self.quantize(encoding_indices)
# embedding loss: move the embeddings towards the encoder's output
q_latent_loss = F.mse_loss(quantized, e.detach())
# commitment loss
e_latent_loss = F.mse_loss(e, quantized.detach())
loss = q_latent_loss + self.commitment_cost * e_latent_loss
# Straight Through Estimator
quantized = e + (quantized - e).detach().contiguous()
return quantized, loss
def get_code_indices(self, x, e):
# x: N * 2 e: N * E
atom_type = x[:, 0]
index_c = (atom_type == 5)
index_n = (atom_type == 6)
index_o = (atom_type == 7)
index_others = ~(index_c + index_n + index_o)
# compute L2 distance
encoding_indices = torch.ones(e.size(0)).long().to(e.device)
# C:
distances = (
torch.sum(e[index_c] ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings.weight[0: 377] ** 2, dim=1) -
2. * torch.matmul(e[index_c], self.embeddings.weight[0: 377].t())
)
encoding_indices[index_c] = torch.argmin(distances, dim=1)
# N:
distances = (
torch.sum(e[index_n] ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings.weight[378: 433] ** 2, dim=1) -
2. * torch.matmul(e[index_n], self.embeddings.weight[378: 433].t())
)
encoding_indices[index_n] = torch.argmin(distances, dim=1) + 378
# O:
distances = (
torch.sum(e[index_o] ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings.weight[434: 488] ** 2, dim=1) -
2. * torch.matmul(e[index_o], self.embeddings.weight[434: 488].t())
)
encoding_indices[index_o] = torch.argmin(distances, dim=1) + 434
# Others:
distances = (
torch.sum(e[index_others] ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings.weight[489: 511] ** 2, dim=1) -
2. * torch.matmul(e[index_others], self.embeddings.weight[489: 511].t())
)
encoding_indices[index_others] = torch.argmin(distances, dim=1) + 489
return encoding_indices
def quantize(self, encoding_indices):
"""Returns embedding tensor for a batch of indices."""
return self.embeddings(encoding_indices)
def from_pretrained(self, model_file):
self.load_state_dict(torch.load(model_file))
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def top_k(logits, thres = 0.5):
num_logits = logits.shape[-1]
k = max(int((1 - thres) * num_logits), 1)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
def compute_accuracy(pred, target):
return float(torch.sum(torch.max(pred.detach(), dim = 1)[1] == target).cpu().item())/len(pred)
def sce_loss(x, y, alpha=1):
x = F.normalize(x, p=2, dim=-1)
y = F.normalize(y, p=2, dim=-1)
loss = (1 - (x * y).sum(dim=-1)).pow_(alpha)
loss = loss.mean()
return loss
def train_vae(args, epoch, model_list, loader, optimizer_list, device):
criterion = nn.CrossEntropyLoss()
model, vq_layer, dec_pred_atoms, dec_pred_bonds, dec_pred_atoms_chiral = model_list
optimizer_model, optimizer_model_vq, optimizer_dec_pred_atoms, optimizer_dec_pred_bonds, optimizer_dec_pred_atoms_chiral = optimizer_list
model.train()
vq_layer.train()
dec_pred_atoms.train()
dec_pred_atoms_chiral.train()
if dec_pred_bonds is not None:
dec_pred_bonds.train()
loss_accum = 0
epoch_iter = tqdm(loader, desc="Iteration")
for step, batch in enumerate(epoch_iter):
batch = batch.to(device)
node_rep = model(batch.x, batch.edge_index, batch.edge_attr)
e, e_q_loss = vq_layer(node_rep, ,node_rep)
pred_node = dec_pred_atoms(e, batch.edge_index, batch.edge_attr)
pred_node_chiral = dec_pred_atoms_chiral(e, batch.edge_index, batch.edge_attr)
atom_loss = criterion(pred_node, batch.x[:, 0])
atom_chiral_loss = criterion(pred_node_chiral, batch.x[:, 1])
recon_loss = atom_loss + atom_chiral_loss
if args.edge:
edge_rep = e[batch.edge_index[0]] + e[batch.edge_index[1]]
pred_edge = dec_pred_bonds(edge_rep, batch.edge_index, batch.edge_attr)
recon_loss += criterion(pred_edge, batch.edge_attr[:,0])
loss = recon_loss + e_q_loss
optimizer_model.zero_grad()
optimizer_model_vq.zero_grad()
optimizer_dec_pred_atoms.zero_grad()
optimizer_dec_pred_atoms_chiral.zero_grad()
if optimizer_dec_pred_bonds is not None:
optimizer_dec_pred_bonds.zero_grad()
loss.backward()
optimizer_model.step()
optimizer_model_vq.step()
optimizer_dec_pred_atoms.step()
optimizer_dec_pred_atoms_chiral.step()
if optimizer_dec_pred_bonds is not None:
optimizer_dec_pred_bonds.step()
loss_accum += float(loss.cpu().item())
epoch_iter.set_description(f"Epoch: {epoch} train_loss: {loss.item():.4f}")
return loss_accum/step
def main():
parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=256,
help='input batch size for training (default: 256)')
parser.add_argument('--epochs', type=int, default=60,
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument('--decay', type=float, default=0,
help='weight decay (default: 0)')
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=300,
help='embedding dimensions (default: 300)')
parser.add_argument('--num_tokens', type=int, default=512,
help='number of atom tokens (default: 512)')
parser.add_argument('--commitment_cost', type = float, default = 0.25, help = 'commitment_cost')
parser.add_argument('--edge', type=int, default=1, help='whether to decode edges or not together with atoms')
parser.add_argument('--dropout_ratio', type=float, default=0.0, help='dropout ratio (default: 0)')
parser.add_argument('--mask_rate', type=float, default=0.0,
help='dropout ratio (default: 0.15)')
parser.add_argument('--JK', type=str, default="last",
help='how the node features are combined across layers. last, sum, max or concat')
parser.add_argument('--dataset', type=str, default = 'zinc_standard_agent', help='root directory of dataset for pretraining')
parser.add_argument('--output_model_file', type=str, default = '', help='filename to output the model')
parser.add_argument('--gnn_type', type=str, default="gin")
parser.add_argument('--seed', type=int, default=0, help = "Seed for splitting dataset.")
parser.add_argument('--num_workers', type=int, default = 8, help='number of workers for dataset loading')
parser.add_argument('--input_model_file', type=str, default=None)
parser.add_argument("--decoder", type=str, default="gin")
parser.add_argument("--use_scheduler", action="store_true", default=True)
args = parser.parse_args()
print(args)
torch.manual_seed(0)
np.random.seed(0)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
print("num layer: %d mask rate: %f mask edge: %d" %(args.num_layer, args.mask_rate, args.edge))
#set up dataset and transform function.
dataset = MoleculeDataset("./dataset/" + args.dataset, dataset=args.dataset)
loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers)
model = GNN(args.num_layer, args.emb_dim).to(device)
if args.input_model_file is not None and args.input_model_file != "":
model.load_state_dict(torch.load(args.input_model_file))
print("Resume training from:", args.input_model_file)
resume = True
else:
resume = False
vq_layer = VectorQuantizer(args.emb_dim, args.num_tokens, args.commitment_cost).to(device)
atom_pred_decoder = GNNDecoder(args.emb_dim, NUM_NODE_ATTR, JK=args.JK, gnn_type=args.gnn_type).to(device)
atom_chiral_pred_decoder = GNNDecoder(args.emb_dim, NUM_NODE_CHIRAL, JK=args.JK, gnn_type=args.gnn_type).to(device)
if args.edge:
NUM_BOND_ATTR = 4
bond_pred_decoder = GNNDecoder(args.emb_dim, NUM_BOND_ATTR, JK=args.JK, gnn_type='linear').to(device)
optimizer_dec_pred_bonds = optim.Adam(bond_pred_decoder.parameters(), lr=args.lr, weight_decay=args.decay)
else:
bond_pred_decoder = None
optimizer_dec_pred_bonds = None
model_list = [model, vq_layer, atom_pred_decoder, bond_pred_decoder, atom_chiral_pred_decoder]
#set up optimizers
optimizer_model = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_model_vq = optim.Adam(vq_layer.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_dec_pred_atoms = optim.Adam(atom_pred_decoder.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_dec_pred_atoms_chiral = optim.Adam(atom_chiral_pred_decoder.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_dec_pred_atoms_chiral = optim.Adam(atom_chiral_pred_decoder.parameters(), lr=args.lr, weight_decay=args.decay)
if args.use_scheduler:
print("--------- Use scheduler -----------")
scheduler = lambda epoch :( 1 + np.cos((epoch) * np.pi / args.epochs) ) * 0.5
scheduler_model = torch.optim.lr_scheduler.LambdaLR(optimizer_model, lr_lambda=scheduler)
scheduler_dec = torch.optim.lr_scheduler.LambdaLR(optimizer_dec_pred_atoms, lr_lambda=scheduler)
scheduler_dec_chiral = torch.optim.lr_scheduler.LambdaLR(optimizer_dec_pred_atoms_chiral, lr_lambda=scheduler)
scheduler_list = [scheduler_model, scheduler_dec, scheduler_dec_chiral, None]
else:
scheduler_model = None
scheduler_dec = None
optimizer_list = [optimizer_model, optimizer_model_vq, optimizer_dec_pred_atoms, optimizer_dec_pred_bonds, optimizer_dec_pred_atoms_chiral]
output_file_temp = "./checkpoints/" + args.output_model_file
for epoch in range(1, args.epochs+1):
print("====epoch " + str(epoch))
train_loss = train_vae(args, epoch, model_list, loader, optimizer_list, device)
if not resume:
if epoch == 30:
torch.save(model.state_dict(), output_file_temp + f"vqencoder.pth")
torch.save(vq_layer.state_dict(), output_file_temp + f"vqquantizer.pth")
print(train_loss)
if scheduler_model is not None:
scheduler_model.step()
if scheduler_dec is not None:
scheduler_dec.step()
output_file = "./checkpoints/" + args.output_model_file
if resume:
torch.save(model.state_dict(), args.input_model_file.rsplit(".", 1)[0] + f"_resume_{args.epochs}_{args.start_epoch}.pth")
elif not args.output_model_file == "":
torch.save(model.state_dict(), output_file + ".pth")
if __name__ == "__main__":
main()