-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathinference.py
142 lines (113 loc) · 5.75 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import librosa
import torch
import torch.nn.functional as F
import numpy as np
import soundfile as sf
from glob import glob
from tqdm import tqdm
from os.path import basename, join, exists
from vq.codec_encoder import CodecEncoder
# from vq.codec_decoder import CodecDecoder
from vq.codec_decoder_vocos import CodecDecoderVocos
from argparse import ArgumentParser
from time import time
from transformers import AutoModel
import torch.nn as nn
from vq.module import SemanticDecoder,SemanticEncoder
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--input-dir', type=str, default='test_audio/input_test')
parser.add_argument('--ckpt', type=str, default='ckpt/epoch=4-step=1400000.ckpt')
parser.add_argument('--output-dir', type=str, default='test_audio/output_test')
args = parser.parse_args()
sr = 16000
print(f'Load codec ckpt from {args.ckpt}')
ckpt = torch.load(args.ckpt, map_location='cpu')
ckpt=ckpt['state_dict']
state_dict = ckpt
from collections import OrderedDict
# 步骤 2:提取并过滤 'codec_enc' 和 'generator' 部分
filtered_state_dict_codec = OrderedDict()
filtered_state_dict_semantic_encoder = OrderedDict()
filtered_state_dict_gen = OrderedDict()
filtered_state_dict_fc_post_a = OrderedDict()
filtered_state_dict_fc_prior = OrderedDict()
for key, value in state_dict.items():
if key.startswith('CodecEnc.'):
# 去掉 'codec_enc.' 前缀,以匹配 CodecEncoder 的参数名
new_key = key[len('CodecEnc.'):]
filtered_state_dict_codec[new_key] = value
elif key.startswith('generator.'):
# 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
new_key = key[len('generator.'):]
filtered_state_dict_gen[new_key] = value
elif key.startswith('fc_post_a.'):
# 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
new_key = key[len('fc_post_a.'):]
filtered_state_dict_fc_post_a[new_key] = value
elif key.startswith('SemanticEncoder_module.'):
# 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
new_key = key[len('SemanticEncoder_module.'):]
filtered_state_dict_semantic_encoder[new_key] = value
elif key.startswith('fc_prior.'):
# 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
new_key = key[len('fc_prior.'):]
filtered_state_dict_fc_prior[new_key] = value
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0", output_hidden_states=True)
semantic_model.eval().cuda()
SemanticEncoder_module = SemanticEncoder(1024,1024,1024)
SemanticEncoder_module.load_state_dict(filtered_state_dict_semantic_encoder)
SemanticEncoder_module = SemanticEncoder_module.eval().cuda()
encoder = CodecEncoder()
encoder.load_state_dict(filtered_state_dict_codec)
encoder = encoder.eval().cuda()
decoder = CodecDecoderVocos()
decoder.load_state_dict(filtered_state_dict_gen)
decoder = decoder.eval().cuda()
fc_post_a = nn.Linear( 2048, 1024 )
fc_post_a.load_state_dict(filtered_state_dict_fc_post_a)
fc_post_a = fc_post_a.eval().cuda()
fc_prior = nn.Linear( 2048, 2048 )
fc_prior.load_state_dict(filtered_state_dict_fc_prior)
fc_prior = fc_prior.eval().cuda()
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
wav_dir = args.output_dir
os.makedirs(wav_dir, exist_ok=True)
# wav_paths = glob(join(args.input_dir, '*.flac')) #
# both wav and flac and mp3
wav_paths = glob(os.path.join(args.input_dir, '**', '*.wav'), recursive=True)
flac_paths = glob(os.path.join(args.input_dir, '**', '*.flac'), recursive=True)
mp3_paths = glob(os.path.join(args.input_dir, '**', '*.mp3'), recursive=True)
# 合并所有路径
wav_paths = wav_paths + flac_paths + mp3_paths
print(f'Found {len(wav_paths)} wavs in {args.input_dir}')
st = time()
for wav_path in tqdm(wav_paths):
target_wav_path = join(wav_dir, basename(wav_path))
wav = librosa.load(wav_path, sr=sr)[0]
wav_cpu = torch.from_numpy(wav)
wav = wav_cpu.unsqueeze(0).cuda()
pad_for_wav = (320 - (wav.shape[1] % 320))
wav = torch.nn.functional.pad(wav, (0, pad_for_wav))
feat = feature_extractor(F.pad(wav[0,:].cpu(), (160, 160)), sampling_rate=16000, return_tensors="pt") .data['input_features']
feat = feat.cuda()
with torch.no_grad():
vq_emb = encoder(wav.unsqueeze(1))
vq_emb = vq_emb.transpose(1, 2)
semantic_target = semantic_model(feat[:, :,:])
semantic_target = semantic_target.hidden_states[16]
semantic_target = semantic_target.transpose(1, 2)
semantic_target = SemanticEncoder_module(semantic_target)
vq_emb = torch.cat([semantic_target, vq_emb], dim=1)
vq_emb = fc_prior(vq_emb.transpose(1, 2)).transpose(1, 2)
_, vq_code, _ = decoder(vq_emb, vq=True) # vq_code here !!!!
vq_post_emb = decoder.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
vq_post_emb = vq_post_emb.transpose(1, 2)
vq_post_emb = fc_post_a(vq_post_emb.transpose(1,2)).transpose(1,2)
recon = decoder(vq_post_emb.transpose(1, 2), vq=False)[0].squeeze().detach().cpu().numpy()
# recon = decoder(decoder.vq2emb(vq_code.transpose(1,2)).transpose(1,2), vq=False).squeeze().detach().cpu().numpy()
sf.write(target_wav_path, recon, sr)
et = time()
print(f'Inference ends, time: {(et-st)/60:.2f} mins')