-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwave_bases.py
86 lines (81 loc) · 3.47 KB
/
wave_bases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def wave_bases(mother,k,scale,param):
"""
This is translation of wave_bases.m by Torrence and Gilbert P. Compo
The folloing is the original README
% WAVE_BASES 1D Wavelet functions Morlet, Paul, or DOG
%
% [DAUGHTER,FOURIER_FACTOR,COI,DOFMIN] = ...
% wave_bases(MOTHER,K,SCALE,PARAM);
%
% Computes the wavelet function as a function of Fourier frequency,
% used for the wavelet transform in Fourier space.
% (This program is called automatically by WAVELET)
%
% INPUTS:
%
% MOTHER = a string, equal to 'MORLET' or 'PAUL' or 'DOG'
% K = a vector, the Fourier frequencies at which to calculate the wavelet
% SCALE = a number, the wavelet scale
% PARAM = the nondimensional parameter for the wavelet function
%
% OUTPUTS:
%
% DAUGHTER = a vector, the wavelet function
% FOURIER_FACTOR = the ratio of Fourier period to scale
% COI = a number, the cone-of-influence size at the scale
% DOFMIN = a number, degrees of freedom for each point in the wavelet power
% (either 2 for Morlet and Paul, or 1 for the DOG)
%
%----------------------------------------------------------------------------
% Copyright (C) 1995-1998, Christopher Torrence and Gilbert P. Compo
% University of Colorado, Program in Atmospheric and Oceanic Sciences.
% This software may be used, copied, or redistributed as long as it is not
% sold and this copyright notice is reproduced on each copy made. This
% routine is provided as is without any express or implied warranties
% whatsoever.
%----------------------------------------------------------------------------
"""
#import modules
import numpy as np
#
mother = mother.upper()
n = len(k)
# define Heaviside step function
def ksign(x):
y=np.zeros_like(x)
y[x>0]=1
return y
#
if mother=='MORLET': #----------------------------------- Morlet
if (param == -1): param = 6.
k0 = param
expnt = -(scale*k - k0)**2/2. *ksign(k)
norm = np.sqrt(scale*k[1])*(np.pi**(-0.25))*np.sqrt(n) # total energy=N [Eqn(7)]
daughter = norm*np.exp(expnt)
daughter = daughter*ksign(k) # Heaviside step function
fourier_factor = (4.*np.pi)/(k0 + np.sqrt(2. + k0**2)) # Scale-->Fourier [Sec.3h]
coi = fourier_factor/np.sqrt(2) # Cone-of-influence [Sec.3g]
dofmin = 2. # Degrees of freedom
elif mother=='PAUL': #-------------------------------- Paul
if (param == -1): param = 4.
m = param
expnt = -(scale*k)*ksign(k)
norm = np.sqrt(scale*k[1])*(2.**m/np.sqrt(m*np.prod(np.arange(2,2*m))))*np.sqrt(n)
daughter = norm*((scale*k)**m)*np.exp(expnt)
daughter = daughter*ksign(k) # Heaviside step function
fourier_factor = 4*np.pi/(2.*m+1.)
coi = fourier_factor*np.sqrt(2)
dofmin = 2.
elif mother=='DOG': #-------------------------------- DOG
if (param == -1): param = 2.
m = param
expnt = -(scale*k)**2 / 2.0
from scipy.special import gamma
norm = np.sqrt(scale*k[1]/gamma(m+0.5))*np.sqrt(n)
daughter = -norm*(1j**m)*((scale*k)**m)*np.exp(expnt);
fourier_factor = 2.*np.pi*np.sqrt(2./(2.*m+1.))
coi = fourier_factor/np.sqrt(2)
dofmin = 1.
else:
raise Exception("Mother must be one of MORLET,PAUL,DOG")
return daughter,fourier_factor,coi,dofmin