-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHA_helpers.py
112 lines (86 loc) · 4.11 KB
/
HA_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
The following codes are extracted and modified from
Author: Damien Irving, [email protected]
Description: Calculate Fourier transform
"""
import math
import numpy as np
import scipy as sp
import scipy.fftpack as fftpack
from copy import deepcopy
def fourier_transform(signal, spacing):
"""Calculate the Fourier Transform.
Args:
signal (numpy.ndarray): Data to be transformed
spacing (scaler): sampling resolution
Returns:
sig_fft (numpy.ndarray): Coefficients obtained from the Fourier Transform
freqs (numpy.ndarray): Wave frequency associated with each coefficient
"""
sig_fft = fftpack.fft(signal)
sample_freq = fftpack.fftfreq(len(signal), d=spacing) * len(signal) * spacing #units = cycles per length of domain
sample_freq = np.resize(sample_freq, sig_fft.shape)
return sig_fft, sample_freq
def spectrum(signal_fft, freqs, scaling='amplitude', variance=None):
"""Calculate the spectral density for a given Fourier Transform.
Args:
signal_fft, freqs (numpy.ndarray): Typically the output of fourier_transform()
scaling (str, optional): Choices for the amplitude scaling for each frequency
are as follows (see Wilks 2011, p440):
'amplitude': no scaling at all (C)
'power': sqaure the amplitude (C^2)
'R2': variance explained = [(n/2)*C^2] / (n-1)*variance^2,
where n and variance are the length and variance of the
orignal data series (R2 = the proportion of the variance
explained by each harmonic)
"""
assert scaling in ['amplitude', 'power', 'R2']
if scaling == 'R2':
assert variance, \
"To calculate variance explained must provide variance value"
if len(signal_fft.shape) > 1:
print("WARNING: Ensure that frequency is the final axis")
# Calculate the entire amplitude spectrum
n = signal_fft.shape[-1]
amp = np.abs(signal_fft) / n
# The positive and negative half are identical, so just keep positive
# and double its amplitude
freq_limit_index = int(math.floor(n / 2))
pos_amp = 2 * np.take(amp, range(1, freq_limit_index), axis=-1)
pos_freqs = np.take(freqs, range(1, freq_limit_index), axis=-1)
if scaling == 'amplitude':
result = pos_amp
elif scaling == 'power':
result = (pos_amp)**2
elif scaling == 'R2':
result = ((n / 2) * (pos_amp**2)) / ((n - 1) * (variance))
return result, pos_freqs
def inverse_fourier_transform(coefficients, sample_freq,
min_freq=None, max_freq=None, exclude='negative'):
"""Inverse Fourier Transform.
Args:
coefficients (numpy.ndarray): Coefficients obtained from the Fourier Transform
sample_freq (numpy.ndarray): Wave frequency associated with each coefficient
max_freq, min_freq (float, optional): Exclude values outside [min_freq, max_freq]
frequency range. (Note that this filtering keeps both the positive and
negative half of the spectrum)
exclude (str, optional): Exclude either the 'positive' or 'negative'
half of the Fourier spectrum. (A Hilbert transform, for example, excludes
the negative part of the spectrum)
"""
assert exclude in ['positive', 'negative', None]
coefs = deepcopy(coefficients) # Deep copy to prevent side effects
# (shallow copy not sufficient for complex
# things like numpy arrays)
if exclude == 'positive':
coefs[sample_freq > 0] = 0
elif exclude == 'negative':
coefs[sample_freq < 0] = 0
if (max_freq == min_freq) and max_freq:
coefs[np.abs(sample_freq) != max_freq] = 0
if max_freq:
coefs[np.abs(sample_freq) > max_freq] = 0
if min_freq:
coefs[np.abs(sample_freq) < min_freq] = 0
result = fftpack.ifft(coefs)
return result