forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
megre_tp_and_pp.py
88 lines (66 loc) · 3.03 KB
/
megre_tp_and_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
from paddlenlp.transformers import LlamaConfig, LlamaForCausalLM
from paddlenlp.utils.log import logger
def merge_pipeline_parallel(tp_degree, pp_degree, path):
tp_state_dict_list = []
for tp in range(tp_degree):
tp_state_dict = {}
for pp in range(pp_degree):
tmp = paddle.load(os.path.join(path, f"model_state.tp{tp:0>2d}_pp{pp:0>2d}.pdparams"), return_numpy=True)
for k, v in tmp.items():
tp_state_dict[k] = v
tp_state_dict_list.append(tp_state_dict)
return tp_state_dict_list
def merge_tensor_parallel(cls, state_dict_list, config) -> None:
"""the entry of converting config and converting model file
Args:
input_dir (str | None): the input dir which contains `pytorch_model.bin` and `config.json` file
config (PretrainedConfig): the PretrainedConfig instance of model
"""
name_action_mappings = cls._get_tensor_parallel_mappings(config, is_split=False)
state_keys_map = cls._resolve_prefix_keys(name_action_mappings.keys(), state_dict_list[0].keys())
for k, v in state_keys_map.items():
name_action_mappings[v] = name_action_mappings.pop(k)
state_dict_to_save = {}
for key in state_dict_list[0].keys():
tensor = state_dict_list[0][key]
if key in name_action_mappings:
ret = [x[key] for x in state_dict_list]
action = name_action_mappings.pop(key)
tensor = action(ret)
state_dict_to_save[key] = tensor
if len(name_action_mappings) > 0:
for x in name_action_mappings.keys():
logger.warning(f"key <{x}> need to merge tensor parallel but we can't find in model state.")
print("Finally, we merging state dict to fellowing tensors.")
for k, v in state_dict_to_save.items():
print(k, v.shape, v.dtype)
return state_dict_to_save
def main():
tp_degree = 2
pp_degree = 2
model_name_or_path = "temp_dir_to_your_ckpt"
assert tp_degree > 1
assert pp_degree > 1
config = LlamaConfig.from_pretrained(model_name_or_path)
cls = LlamaForCausalLM
tp_state_dict_list = merge_pipeline_parallel(tp_degree, pp_degree, model_name_or_path)
state_dict_to_save = merge_tensor_parallel(cls=cls, state_dict_list=tp_state_dict_list, config=config)
print("saving")
paddle.save(state_dict_to_save, os.path.join(model_name_or_path, "model_state.pdparams"))
if __name__ == "__main__":
main()