-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclass_evaluate_MPdata.py
90 lines (83 loc) · 4.2 KB
/
class_evaluate_MPdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch_geometric
import torch_scatter
from pymatgen.core.structure import Structure
from pymatgen.core.periodic_table import Element
from e3nn.point.data_helpers import DataPeriodicNeighbors
import numpy as np
import scipy.constants as const
from mpmath import mp
class ComprehensiveEvaluation:
def __init__(self, cif_namelist, model_kwargs, cif_path='data/', chunk_id=0):
self.chunk_id = chunk_id
self.model_kwargs = model_kwargs
self.cif_strlist = []
for x in cif_namelist:
with open(cif_path + x, 'r') as f:
self.cif_strlist.append(f.read().splitlines())
self.structures = [Structure.from_str("\n".join(c), "CIF") for c in self.cif_strlist]
self.encode_structures(self.structures)
def encode_structures(self, structures):
len_element = 118
self.data = []
for i, struct in enumerate(structures):
# print(f"Encoding sample {i+1:5d}/{len(structures):5d} for mp-{self.chunk_id:3d} ", end="\r", flush=True)
input = torch.zeros(len(struct), len_element)
for j, site in enumerate(struct):
input[j, int(Element(str(site.specie)).Z)] = Element(str(site.specie)).atomic_mass
self.data.append(DataPeriodicNeighbors(
x=input, Rs_in=None,
pos=torch.tensor(struct.cart_coords.copy()), lattice=torch.tensor(struct.lattice.matrix.copy()),
r_max=self.model_kwargs.get('max_radius'), y=torch.zeros(1,50), n_norm=40,
))
def predict_phdos(self, data, model, device='cpu'):
self.phdos = []
for i in range(len(data)):
# print(f"Calculating sample {i+1:5d}/{len(data):5d} for mp-{self.chunk_id:3d} ", end="\r", flush=True)
d = torch_geometric.data.Batch.from_data_list([data[i]])
d.to(device)
self.phdos.append(model(d.x, d.edge_index, d.edge_attr, n_norm=40, batch=d.batch)[0].cpu().detach().tolist())
def cal_heatcap(self, g, omega, T_lst, structures):
assert len(g) == len(structures), "Lengths of DOS and structures should be equal"
omega_hz = np.array(omega[1:])*const.c*100*2*np.pi # wavenumber to circular frequency
self.C_v_mol = []
self.C_v_kg = []
self.phdos_norm = []
for i, struct in enumerate(structures):
# print(f"Calculating heat capacity {i+1:5d}/{len(structures):5d} for mp-{self.chunk_id:3d} ", end="\r", flush=True)
g_norm = np.array(g[i][1:])/np.trapz(np.array(g[i][1:]), omega_hz)
self.phdos_norm.append(np.insert(g_norm, 0, 0).tolist())
if struct.ntypesp == 1:
g_norm_xSitesNum = 3*g_norm
else:
g_norm_xSitesNum = 3*struct.num_sites*g_norm
C_v_mol_sub = []
C_v_kg_sub = []
for T in T_lst:
x = const.hbar*omega_hz/(2*const.k*T)
csch_x, coth_x = np.zeros(x.shape[0]), np.zeros(x.shape[0])
for i in range(len(x)):
csch_x[i], coth_x[i] = float(mp.csch(x[i])), float(mp.coth(x[i]))
C_v_uc = const.k*np.trapz((csch_x ** 2) * (x ** 2) * g_norm_xSitesNum, omega_hz)
C_v_mol_sub.append(C_v_uc*const.N_A)
C_v_kg_sub.append(C_v_uc*1000/(struct.density*struct.volume*1e-24))
self.C_v_mol.append(C_v_mol_sub)
self.C_v_kg.append(C_v_kg_sub)
class AtomEmbeddingAndSumLastLayer(torch.nn.Module):
def __init__(self, atom_type_in, atom_type_out, model):
super().__init__()
self.linear = torch.nn.Linear(atom_type_in, atom_type_out)
self.model = model
self.relu = torch.nn.ReLU()
def forward(self, x, *args, batch=None, **kwargs):
output = self.linear(x)
output = self.relu(output)
output = self.model(output, *args, **kwargs)
if batch is None:
N = output.shape[0]
batch = output.new_ones(N)
output = torch_scatter.scatter_add(output, batch, dim=0)
output = self.relu(output)
maxima, _ = torch.max(output, axis=1)
output = output.div(maxima.unsqueeze(1))
return output