-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
440 lines (397 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import argparse
import os
from datetime import datetime
# from utils.logger import setlogger
import logging
# from utils.train_graph_utils import train_utils
from collections import Iterable
from sklearn.metrics import classification_report, confusion_matrix, precision_recall_fscore_support,accuracy_score
import numpy as np
import time
import warnings
import torch
from torch import nn
import torch.nn.functional as F
from torch.optim import Adam
from torch_geometric.data import DataLoader
from CausalGCN import CLUB, CausalGCN
from TEgraph import TEgraph
args = None
def parse_args():
str2bool = lambda x: x.lower() == "true"
parser = argparse.ArgumentParser(description='Train')
# basic parameters
parser.add_argument('--model_name', type=str, default='CausalGCN', help='the name of the model') #'CausalGCN'
parser.add_argument('--sample_length', type=int, default=100, help='sample_lengths')
parser.add_argument('--overlap', type=int, default=1, help='overlap')
parser.add_argument('--noise_std', type=float, default=0.05, help='the noise added in test data')
parser.add_argument('--Input_type', choices=['TD', 'FD','other'],type=str, default='TD', help='the input type decides the length of input')
parser.add_argument('--cuda_device', type=str, default='0', help='assign device')
parser.add_argument('--batch_size', type=int, default=128, help='batchsize of the training process')
parser.add_argument('--num_workers', type=int, default=0, help='the number of training process')
# Define the tasks
parser.add_argument('--task', choices=['Node', 'Graph'], type=str,
default='Graph', help='Node classification or Graph classification')
parser.add_argument('--pooltype', choices=['TopKPool', 'EdgePool', 'ASAPool', 'SAGPool'],type=str,
default='EdgePool', help='For the Graph classification task')
# optimization information
parser.add_argument('--layer_num_last', type=int, default=0, help='the number of last layers which unfreeze')
parser.add_argument('--opt', type=str, choices=['sgd', 'adam'], default='sgd', help='the optimizer')
parser.add_argument('--lr', type=float, default=0.001, help='the initial learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='the momentum for sgd')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='the weight decay')
parser.add_argument('--lr_scheduler', type=str, choices=['step', 'exp', 'stepLR', 'fix'], default='step', help='the learning rate schedule')
parser.add_argument('--gamma', type=float, default=0.1, help='learning rate scheduler parameter for step and exp')
parser.add_argument('--steps', type=str, default='9', help='the learning rate decay for step and stepLR')
# save, load and display information
parser.add_argument('--resume', type=str, default='', help='the directory of the resume training model')
parser.add_argument('--max_model_num', type=int, default=1, help='the number of most recent models to save')
parser.add_argument('--max_epochs', type=int, default=100, help='max number of epoch')
parser.add_argument('--print_step', type=int, default=100, help='the interval of log training information')
###
parser.add_argument('--layers', type=int, default=2)
parser.add_argument('--hidden', type=int, default=128)
parser.add_argument('--with_random', type=str2bool, default=True)
parser.add_argument('--eval_random', type=str2bool, default=False) #False
parser.add_argument('--without_node_attention', type=str2bool, default=False)
parser.add_argument('--without_edge_attention', type=str2bool, default=False)
parser.add_argument('--fc_num', type=str, default=2)
parser.add_argument('--cat_or_add', type=str, default="add")#"add"
parser.add_argument('--c', type=float, default=0.001) ##0.5
parser.add_argument('--o', type=float, default=1.0)
parser.add_argument('--co', type=float, default=1.0)
parser.add_argument('--harf_hidden', type=float, default=0.5)
args = parser.parse_args()
return args
# convert a list of list to a list [[],[],[]]->[,,]
def flatten(items):
"""Yield items from any nested iterable; see Reference."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
for sub_x in flatten(x):
yield sub_x
else:
yield x
def train_causal_epoch(epoch, model, optimizer, mi_estimator, mi_optimizer, loader, device, args):
model.train()
mi_estimator.eval()
total_loss = 0
total_loss_c = 0
total_loss_o = 0
total_loss_co = 0
correct_o = 0
for it, data in enumerate(loader):
optimizer.zero_grad()
data = data.to(device)
one_hot_target = data.y.view(-1)
c_logs, o_logs, co_logs, c_f, o_f,_,_ = model(data, eval_random=args.with_random)
c_loss = mi_estimator(o_f, c_f)
# uniform_target = torch.ones_like(c_logs, dtype=torch.float).to(device) / model.num_classes
# c_loss = F.kl_div(c_logs, uniform_target, reduction='batchmean')
o_loss = F.nll_loss(o_logs, one_hot_target)
co_loss = F.nll_loss(co_logs, one_hot_target)
if epoch < 0:
c = 0.0
co = 0.0
else:
c = args.c
co = args.co
loss = c * c_loss + args.o * o_loss + co * co_loss
pred_o = o_logs.max(1)[1]
correct_o += pred_o.eq(data.y.view(-1)).sum().item()
loss.backward()
total_loss += loss.item() * data.num_graphs
total_loss_c += c * (c_loss.item()) * data.num_graphs
total_loss_o += args.o * (o_loss.item()) * data.num_graphs
total_loss_co += co * (co_loss.item()) * data.num_graphs
optimizer.step()
for inter_mi in range(20):
mi_estimator.train()
_, _, _, c_f, o_f,_,_ = model(data, eval_random=args.with_random)
mi_loss = mi_estimator.learning_loss(o_f, c_f)
mi_optimizer.zero_grad()
mi_loss.backward()
mi_optimizer.step()
num = len(loader.dataset)
total_loss = total_loss / num
total_loss_c = total_loss_c / num
total_loss_o = total_loss_o / num
total_loss_co = total_loss_co / num
correct_o = correct_o / num
return total_loss, total_loss_c, total_loss_o, total_loss_co, correct_o
def train_causal_epoch2(epoch, model, optimizer, mi_estimator, mi_optimizer, loader, device, args):
model.train()
mi_estimator.eval()
total_loss = 0
total_loss_c = 0
total_loss_o = 0
total_loss_co = 0
correct_o = 0
data_pred = []
data_label = []
for it, data in enumerate(loader):
optimizer.zero_grad()
data = data.to(device)
one_hot_target = data.y.view(-1)
c_logs, o_logs, co_logs, c_f, o_f,_,_ = model(data, eval_random=args.with_random)
c_loss = mi_estimator(o_f, c_f)
# uniform_target = torch.ones_like(c_logs, dtype=torch.float).to(device) / model.num_classes
# c_loss = F.kl_div(c_logs, uniform_target, reduction='batchmean')
o_loss = F.nll_loss(o_logs, one_hot_target)
co_loss = F.nll_loss(co_logs, one_hot_target)
if epoch < 0:
c = 0.0
co = 0.0
else:
c = args.c
co = args.co
loss = c * c_loss + args.o * o_loss + co * co_loss
pred_o = o_logs.max(1)[1]
correct_o += pred_o.eq(data.y.view(-1)).sum().item()
pred = co_logs.max(1)[1]
loss.backward()
total_loss += loss.item() * data.num_graphs
total_loss_c += c * (c_loss.item()) * data.num_graphs
total_loss_o += args.o * (o_loss.item()) * data.num_graphs
total_loss_co += co * (co_loss.item()) * data.num_graphs
optimizer.step()
data_pred.append(pred.cpu().detach().data.tolist())
data_label.append(data.y.cpu().detach().data.tolist())
for inter_mi in range(20):
mi_estimator.train()
_, _, _, c_f, o_f,_,_ = model(data, eval_random=args.with_random)
mi_loss = mi_estimator.learning_loss(o_f, c_f)
mi_optimizer.zero_grad()
mi_loss.backward()
mi_optimizer.step()
list_data_label = list(flatten(data_label))
list_data_pred = list(flatten(data_pred))
all_report = precision_recall_fscore_support(list_data_label, list_data_pred, average='weighted')
all_precision = all_report[0]
all_recall = all_report[1]
all_fscore = all_report[2]
print('Training all_precision', all_precision, 'all_recall', all_recall, 'all_fscore', all_fscore)
num = len(loader.dataset)
total_loss = total_loss / num
total_loss_c = total_loss_c / num
total_loss_o = total_loss_o / num
total_loss_co = total_loss_co / num
correct_o = correct_o / num
return total_loss, total_loss_c, total_loss_o, total_loss_co, correct_o
def eval_acc_causal(model, loader, device, args):
model.eval()
eval_random = args.eval_random
correct = 0
correct_c = 0
correct_o = 0
for data in loader:
data = data.to(device)
with torch.no_grad():
c_logs, o_logs, co_logs, _, _,_,_ = model(data, eval_random=eval_random)
pred = co_logs.max(1)[1]
pred_c = c_logs.max(1)[1]
pred_o = o_logs.max(1)[1]
correct += pred.eq(data.y.view(-1)).sum().item()
correct_c += pred_c.eq(data.y.view(-1)).sum().item()
correct_o += pred_o.eq(data.y.view(-1)).sum().item()
acc_co = correct / len(loader.dataset)
acc_c = correct_c / len(loader.dataset)
acc_o = correct_o / len(loader.dataset)
return acc_co, acc_c, acc_o
def eval_acc_causal2(model, loader, device, args):
model.eval()
eval_random = args.eval_random
correct = 0
correct_c = 0
correct_o = 0
data_pred = []
data_label = []
for data in loader:
data = data.to(device)
with torch.no_grad():
c_logs, o_logs, co_logs, _, _,_,_ = model(data, eval_random=eval_random)
pred = co_logs.max(1)[1]
pred_c = c_logs.max(1)[1]
pred_o = o_logs.max(1)[1]
correct += pred.eq(data.y.view(-1)).sum().item()
correct_c += pred_c.eq(data.y.view(-1)).sum().item()
correct_o += pred_o.eq(data.y.view(-1)).sum().item()
data_pred.append(pred.cpu().detach().data.tolist())
data_label.append(data.y.cpu().detach().data.tolist())
list_data_label = list(flatten(data_label))
list_data_pred = list(flatten(data_pred))
all_report = precision_recall_fscore_support(list_data_label, list_data_pred, average='weighted')
all_precision = all_report[0]
all_recall = all_report[1]
all_fscore = all_report[2]
print('Testing all_precision', all_precision, 'all_recall', all_recall, 'all_fscore', all_fscore)
print(classification_report(list_data_label, list_data_pred))
print(confusion_matrix(list_data_label, list_data_pred))
acc_co = correct / len(loader.dataset)
acc_c = correct_c / len(loader.dataset)
acc_o = correct_o / len(loader.dataset)
return acc_co, acc_c, acc_o
def eval_acc_causal3(model, loader, device, args):
model.eval()
eval_random = args.eval_random
correct = 0
correct_c = 0
correct_o = 0
for data in loader:
data = data.to(device)
with torch.no_grad():
c_logs, o_logs, co_logs, _, _, edgatt, nodeatt = model(data, eval_random=eval_random)
pred = co_logs.max(1)[1]
pred_c = c_logs.max(1)[1]
pred_o = o_logs.max(1)[1]
correct += pred.eq(data.y.view(-1)).sum().item()
correct_c += pred_c.eq(data.y.view(-1)).sum().item()
correct_o += pred_o.eq(data.y.view(-1)).sum().item()
acc_co = correct / len(loader.dataset)
acc_c = correct_c / len(loader.dataset)
acc_o = correct_o / len(loader.dataset)
np.save('edgatt_TE', edgatt.cpu().numpy())
np.save('nodeatt_TE', nodeatt.cpu().numpy())
np.save('labels_TE', (data.y.view(-1)).cpu().numpy())
return acc_co, acc_c, acc_o
def eval_acc_causal4(model, loader, device, args):
model.eval()
eval_random = args.eval_random
correct = 0
correct_c = 0
correct_o = 0
data_pred_c = []
data_pred_o = []
data_pred_co = []
data_label = []
for data in loader:
data = data.to(device)
with torch.no_grad():
c_logs, o_logs, co_logs, _, _,_,_ = model(data, eval_random=eval_random)
pred = co_logs.max(1)[1]
pred_c = c_logs.max(1)[1]
pred_o = o_logs.max(1)[1]
correct += pred.eq(data.y.view(-1)).sum().item()
correct_c += pred_c.eq(data.y.view(-1)).sum().item()
correct_o += pred_o.eq(data.y.view(-1)).sum().item()
data_pred_co.append(pred.cpu().detach().data.tolist())
data_pred_c.append(pred_c.cpu().detach().data.tolist())
data_pred_o.append(pred_o.cpu().detach().data.tolist())
data_label.append(data.y.cpu().detach().data.tolist())
list_data_label = list(flatten(data_label))
list_data_pred_co = list(flatten(data_pred_co))
list_data_pred_c = list(flatten(data_pred_c))
list_data_pred_o = list(flatten(data_pred_o))
all_report = precision_recall_fscore_support(list_data_label, list_data_pred_co, average='weighted')
all_precision = all_report[0]
all_recall = all_report[1]
all_fscore = all_report[2]
print('CO Testing all_precision', all_precision, 'all_recall', all_recall, 'all_fscore', all_fscore)
print(classification_report(list_data_label, list_data_pred_co))
print(confusion_matrix(list_data_label, list_data_pred_co))
##########
all_report = precision_recall_fscore_support(list_data_label, list_data_pred_c, average='weighted')
all_precision = all_report[0]
all_recall = all_report[1]
all_fscore = all_report[2]
print('C Testing all_precision', all_precision, 'all_recall', all_recall, 'all_fscore', all_fscore)
print(classification_report(list_data_label, list_data_pred_c))
print(confusion_matrix(list_data_label, list_data_pred_c))
##############
all_report = precision_recall_fscore_support(list_data_label, list_data_pred_o, average='weighted')
all_precision = all_report[0]
all_recall = all_report[1]
all_fscore = all_report[2]
print('O Testing all_precision', all_precision, 'all_recall', all_recall, 'all_fscore', all_fscore)
print(classification_report(list_data_label, list_data_pred_o))
print(confusion_matrix(list_data_label, list_data_pred_o))
acc_co = correct / len(loader.dataset)
acc_c = correct_c / len(loader.dataset)
acc_o = correct_o / len(loader.dataset)
return acc_co, acc_c, acc_o
if __name__ == '__main__':
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_device.strip()
device = torch.device("cuda")
# Dataset = getattr(datasets, args.data_name)
datasets = {}
datasets['train'], datasets['val'] = TEgraph(args.sample_length, args.overlap, args.noise_std).data_preprare()
# Define the model
InputType = args.Input_type
if InputType == "TD":
feature = args.sample_length
elif InputType == "FD":
feature = int(args.sample_length / 2)
elif InputType == "other":
feature = 1
else:
print("The InputType is wrong!!")
train_accs, test_accs, test_accs_c, test_accs_o = [], [], [], []
# model = CausalGCN(num_features=feature, num_classes=Dataset.num_classes)
random_guess = 1.0 / TEgraph.num_classes
best_test_acc, best_epoch, best_test_acc_c, best_test_acc_o = 0, 0, 0, 0
train_dataset = datasets['train']
test_dataset = datasets['val']
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False)
seed = 10
torch.manual_seed(seed)
if args.model_name == "CausalGCN":
model = CausalGCN(num_features=feature, num_classes=TEgraph.num_classes, args=args,gfn=False,edge_norm=True).to(device)
elif args.model_name == "CausalGIN":
model = CausalGIN(num_features=feature, num_classes=TEgraph.num_classes, args=args, gfn=False, edge_norm=True).to(
device)
elif args.model_name == "CausalGAT":
model = CausalGAT(num_features=feature, num_classes=TEgraph.num_classes, args=args).to(
device)
else:
print('No model')
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
mi_estimator = CLUB(x_dim=args.hidden, y_dim=args.hidden, hidden_size=args.hidden).to(device)
mi_optimizer = Adam(mi_estimator.parameters(), lr=0.01)#args.lr
for epoch in range(1, args.max_epochs + 1):
if epoch >40:
train_loss, loss_c, loss_o, loss_co, train_acc = train_causal_epoch(epoch, model, optimizer, mi_estimator,
mi_optimizer, train_loader, device,
args)
test_acc, test_acc_c, test_acc_o = eval_acc_causal4(model, test_loader, device, args)
# if epoch>95:
# train_loss, loss_c, loss_o, loss_co, train_acc = train_causal_epoch2(epoch, model, optimizer, mi_estimator,
# mi_optimizer, train_loader, device,
# args)
# test_acc, test_acc_c, test_acc_o = eval_acc_causal2(model, test_loader, device, args)
else:
train_loss, loss_c, loss_o, loss_co, train_acc = train_causal_epoch(epoch, model, optimizer, mi_estimator,
mi_optimizer, train_loader, device, args)
test_acc, test_acc_c, test_acc_o = eval_acc_causal(model, test_loader, device, args)
train_accs.append(train_acc)
test_accs.append(test_acc)
test_accs_c.append(test_acc_c)
test_accs_o.append(test_acc_o)
if test_acc > best_test_acc:
best_test_acc = test_acc
best_epoch = epoch
best_test_acc_c = test_acc_c
best_test_acc_o = test_acc_o
print(
"Causal | Epoch:[{}/{}] Loss:[{:.4f}={:.4f}+{:.4f}+{:.4f}] Train:[{:.4f}] Test:[{:.2f}] Test_o:[{:.2f}] Test_c:[{:.2f}] (RG:{:.2f}) | Best Test:[{:.2f}] at Epoch:[{}] | Test_o:[{:.2f}] Test_c:[{:.2f}]"
.format(
epoch, args.max_epochs,
train_loss, loss_c, loss_o, loss_co,
train_acc * 100,
test_acc * 100,
test_acc_o * 100,
test_acc_c * 100,
random_guess * 100,
best_test_acc * 100,
best_epoch,
best_test_acc_o * 100,
best_test_acc_c * 100))
print(
"syd: Causal | Best Test:[{:.2f}] at epoch [{}] | Test_o:[{:.2f}] Test_c:[{:.2f}] (RG:{:.2f})"
.format(
best_test_acc * 100,
best_epoch,
best_test_acc_o * 100,
best_test_acc_c * 100,
random_guess * 100))