-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdecompose_SVR_forecasting.py
70 lines (54 loc) · 2.34 KB
/
decompose_SVR_forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import util
from models import decompose
import eval
from naive_SVR_forecasting import SVR_forecasting
import time
def decompose_SVR_forecasting(ts, dataset, freq, lag, C=0.1, epsilon=0.01):
# 序列分解
trend, seasonal, residual = decompose.ts_decompose(ts, freq=freq)
print("trend shape:", trend.shape)
print("peroid shape:", seasonal.shape)
print("residual shape:", residual.shape)
# 分别预测
resWin = trendWin = lag
t1 = time.time()
trTrain, trTest, mae1, mrse1, mape1 = SVR_forecasting(trend, lookBack=lag, C=C, epsilon=epsilon)
resTrain, resTest, mae2, mrse2, mape2 = SVR_forecasting(residual, lookBack=lag, C=C, epsilon=epsilon)
t2 = time.time()
print(t2-t1)
# 数据对齐
trendPred, resPred = util.align(trTrain,trTest,trendWin,resTrain,resTest,resWin)
# 获取最终预测结果
finalPred = trendPred+seasonal+resPred
trainPred = trTrain+seasonal[trendWin:trendWin+trTrain.shape[0]]+resTrain
testPred = trTest+seasonal[2*resWin+resTrain.shape[0]:]+resTest
# 获得ground-truth数据
data = dataset[freq//2:-(freq//2)]
trainY = data[trendWin:trendWin+trTrain.shape[0]]
testY = data[2*resWin+resTrain.shape[0]:]
# 评估指标
MAE = eval.calcMAE(testY, testPred)
print("test MAE", MAE)
MRSE = eval.calcRMSE(testY, testPred)
print("test RMSE", MRSE)
MAPE = eval.calcMAPE(testY, testPred)
print("test MAPE", MAPE)
SMAPE = eval.calcSMAPE(testY, testPred)
print("test SMAPE", SMAPE)
# plt.plot(data)
# plt.plot(finalPred)
# plt.show()
return trainPred, testPred, MAE, MRSE, SMAPE
if __name__ == "__main__":
lag = 24
freq = 4
C = 0.01
epsilon = 0.01
# ts, data = util.load_data("./data/NSW2013.csv", columnName="TOTALDEMAND")
# ts, data = util.load_data("./data/bike_hour.csv", columnName="cnt")
# ts, data = util.load_data("./data/TAS2016.csv", columnName="TOTALDEMAND")
# ts, data = util.load_data("./data/traffic_data_in_bits.csv", columnName="value")
ts, data = util.load_data("./data/beijing_pm25.csv", columnName="pm2.5")
# ts, data = util.load_data("./data/pollution.csv", columnName="Ozone")
trainPred, testPred, mae, mrse, smape = decompose_SVR_forecasting(ts, data, lag=lag, freq=freq,
C=C, epsilon=epsilon)