-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpope_loader.py
47 lines (36 loc) · 1.31 KB
/
pope_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import json
import torch
import numpy as np
from torch.utils.data import Dataset
from PIL import Image
class POPEDataSet(Dataset):
def __init__(self, pope_path, data_path, trans):
self.pope_path = pope_path
self.data_path = data_path
self.trans = trans
image_list, query_list, label_list = [], [], []
for q in open(pope_path, 'r'):
line = json.loads(q)
image_list.append(line['image'])
query_list.append(line['text'])
label_list.append(line['label'])
for i in range(len(label_list)):
if label_list[i] == 'no':
label_list[i] = 0
else:
label_list[i] = 1
assert len(image_list) == len(query_list)
assert len(image_list) == len(label_list)
self.image_list = image_list
self.query_list = query_list
self.label_list = label_list
def __len__(self):
return len(self.label_list)
def __getitem__(self, index):
image_path = os.path.join(self.data_path, self.image_list[index])
raw_image = Image.open(image_path).convert("RGB")
image = self.trans(raw_image)
query = self.query_list[index]
label = self.label_list[index]
return {"image": image, "query": query, "label": label}