-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
318 lines (213 loc) · 11.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import config
from os.path import join
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join([str(i) for i in config.args.gpu])
from preprocessor import Preprocessor
from utils.build_model import get_model
from utils.helper import test_single_volume, get_device
from utils.file_utils import load_json, load_pickle, mkdir
from skimage import morphology
from scipy.ndimage import zoom
from rich.progress import track
from skimage.transform import resize
import torch
import numpy as np
import pandas as pd
import SimpleITK as sitk
import medpy.metric.binary as metric
from networks.ATM_V9 import get_Unet_ATM_V9
from networks.CAT_Net import get_cat_net
device = get_device()
class inference:
def __init__(self, args, root_dir, dataset='BileDuct', process_type='2D'):
self.args = args
self.type = process_type
self.root_dir = root_dir
self.dataset = dataset
self.dataset_root_dir = join(root_dir, dataset)
self.predict_raw_dir = join(self.dataset_root_dir, 'predict', args.model + '_' + args.model_remark, 'raw')
self.predict_postprocess_dir = join(self.dataset_root_dir, 'predict', args.model + '_' + args.model_remark, 'postprocess')
self.preprocessed_dir = join(self.dataset_root_dir, 'preprocessed_data')
self.preprocess_dataset_json = join(self.preprocessed_dir, 'preprocess_dataset.json')
self.intensityproperties_file = join(self.dataset_root_dir, 'cropped_data', 'intensityproperties.pkl')
self.model = None
self.metric = None
self.patch_size = 256
self.sample_slices = args.sample_slices
self.resize_ct = lambda data, x, y: zoom(data, (1.0, self.patch_size / x, self.patch_size / y), order=3)
self.restore_label = lambda label, x, y: zoom(label, (1.0, x / self.patch_size, y / self.patch_size), order=0)
self.reprocess_test_data = False
self.row_name = ['dice', 'precision', 'sensitivity']
self.eval_matrix = 'eval_' + args.dataset + '_wo_postprocess.csv'
def postprocess(self, pre, threshhold=320):
post_arr = morphology.remove_small_objects(pre.astype(np.bool8), threshhold, connectivity=3)
return post_arr.astype(np.float32)
def get_image_from_array(self, arr, properties):
image = sitk.GetImageFromArray(arr)
image.SetOrigin(properties['itk_origin'])
image.SetDirection(properties['itk_direction'])
image.SetSpacing(properties['itk_spacing'])
return image
def save_predict(self, arr, case_name, properties):
label = self.get_image_from_array(arr, properties)
sitk.WriteImage(label, join(self.predict_raw_dir, case_name+'.nii.gz'))
if self.args.postprocess is True:
if not os.path.exists(self.predict_postprocess_dir):
mkdir(self.predict_postprocess_dir)
post_arr = self.postprocess(arr)
post_pre = self.get_image_from_array(post_arr, properties)
sitk.WriteImage(post_pre, join(self.predict_postprocess_dir, case_name+'.nii.gz'))
print('Inference of case {} has been saved done...\n\n'.format(case_name))
def preprocess_data(self):
preprocess_json = load_json(self.preprocess_dataset_json)
if self.reprocess_test_data is False and \
"test" in preprocess_json.keys() and \
len(preprocess_json['test']) > 0 and \
"preprocess_npy" in preprocess_json['test'][0].keys():
print('Test data have been preprocessed before')
else:
print('Test data have not been preprocessed yet')
preprocesor = Preprocessor(self.root_dir, self.dataset, mode='test')
preprocesor.crop_data()
preprocesor.preprocess_data()
print('Test data have been preprocessed done')
def pad2origin(self, arr, box, origin_shape, extend_slices=0):
pad_arr = np.pad(arr, ((box[0][0]+extend_slices, origin_shape[0]-box[0][1]+extend_slices),
(box[1][0], origin_shape[1]-box[1][1]),
(box[2][0], origin_shape[2]-box[2][1])), 'constant', constant_values=(0, 0))
assert pad_arr.shape[0] == origin_shape[0] and pad_arr.shape[1] == origin_shape[1] and pad_arr.shape[2] == origin_shape[2]
return pad_arr
def reduction_for2D(self, predict, properties):
predict = self.restore_label(predict, properties['crop_shape'][1], properties['crop_shape'][2])
predict = self.pad2origin(predict, properties['liver_box'], properties['origin_shape'], 0)
return predict
def reduction_for25D(self, predict, properties):
'''
there exists a bug in the function that is not fixed.
'''
extend_slices = properties['consecutive_slices'] // 2
predict = self.restore_label(predict, properties['new_crop_shape'][1], properties['new_crop_shape'][2])
predict = self.pad2origin(predict, properties['new_box'], properties['interpolation_shape'], extend_slices)
scale_rate = properties['new_spacing'] / properties['spacing']
new_shape = np.round(predict.shape * scale_rate).astype(np.int)
reduction_pre = resize(predict.astype(np.float32), new_shape, order=0).astype(np.uint8)
reduction_pre = self.pad2origin(reduction_pre, properties['origin_box'], properties['origin_shape'], 0)
return reduction_pre
def reduction(self, predict, properties):
if self.type == '2D':
predict = self.reduction_for2D(predict, properties)
if self.type == '2.5D':
predict = self.reduction_for25D(predict, properties)
if self.type == '3D':
pass
return predict
def get_attribute(self, case_dic):
name = case_dic['name']
data = np.load(case_dic['preprocess_npy']) # shape: (3, all_slices, consecutive slices, h, w)
properties = load_pickle(case_dic['preprocess_pkl'])
GT = sitk.GetArrayFromImage(sitk.ReadImage(case_dic['label']))
# 计算取样的个数: 3/5/7
self.consecutive_slices = data.shape[2]
mid_slice = self.consecutive_slices // 2
image = data[0][:, mid_slice-self.sample_slices//2:mid_slice+self.sample_slices//2+1,...].copy()
return name, image, GT, properties
def cal_metric(self, PR, GT):
assert len(PR.shape) == 3 and len(PR.shape) == len(GT.shape)
res = {}
res['Dice'] = metric.dc(PR, GT)
res['Jaccard'] = metric.jc(PR, GT)
res['Precision'] = metric.precision(PR, GT)
res['Recall'] = metric.recall(PR, GT)
# res['Specificity'] = metric.specificity(PR, GT)
return res
def run(self, model=None):
self.preprocess_data()
self.test_data = load_json(self.preprocess_dataset_json)['test']
self.model = model
if self.model is None:
self.model = get_model(self.args, mode='test', device=device, device_ids=[i for i in range(len(self.args.gpu))])
self.metric_res = {}
for idx, case_dic in track(enumerate(self.test_data),total=len(self.test_data), description='test'):
case_name, image, GT, properties = self.get_attribute(case_dic)
PR = test_single_volume(image, self.model, self.args.batch_size, device=device, dsv=self.args.dsv, use_cpu=self.args.use_cpu, multi_loss=(self.args.model=='ATM_V9')).to(torch.float32)
PR = torch.round(PR).squeeze().numpy() # (z, x, y) value : (0 or 1)
restore_PR = self.reduction(PR, properties)
self.metric_res[case_name] = self.cal_metric(restore_PR, GT)
if self.args.save_infer is True:
if not os.path.exists(self.predict_raw_dir):
mkdir(self.predict_raw_dir)
self.save_predict(restore_PR, case_name, properties)
self.print_metrics()
if self.args.save_csv is True:
self._res2csv()
def print_metrics(self):
self.avg = {}
for name, case_metric in self.metric_res.items():
print('Case-name: ', name)
for key, value in case_metric.items():
print('{}: {}'.format(key, value))
if key not in self.avg.keys():
self.avg[key] = value
else:
self.avg[key] += value
print('\n')
print('AVG:')
for key, value in self.avg.items():
print('{}: {}'.format(key, value / len(self.metric_res.keys())))
self.avg[key] = value / len(self.metric_res.keys())
print('\n')
self.metric_res['AVG'] = self.avg
def get_avg(self):
return self.avg
def _res2csv(self):
eval_matrix = None
row_tuple = []
data = []
for key in self.metric_res.keys():
model_name = self.get_model_name(self.args.model)
row_tuple.append((model_name, key))
data.append(list(self.metric_res[key].values()))
columns = list(self.metric_res['AVG'].keys())
if self.eval_matrix not in os.listdir():
eval_matrix = pd.DataFrame(
data=np.array(data),
index = pd.MultiIndex.from_tuples(row_tuple),
columns = columns
)
eval_matrix.describe().round(4)
eval_matrix.index.names = ['Model', 'Case']
else:
print('add {} test result to eval_matrix.csv file'.format(self.args.model))
eval_matrix = pd.read_csv(self.eval_matrix).set_index(['Model', 'Case'])
add_frame = pd.DataFrame(
data=np.array(data),
index = pd.MultiIndex.from_tuples(row_tuple),
columns = columns
)
eval_matrix = eval_matrix.append(add_frame)
eval_matrix.describe().round(4)
eval_matrix = eval_matrix.groupby(['Model', 'Case']).mean()
eval_matrix.to_csv(self.eval_matrix)
print('test out have been saved to eval_matrix.csv file')
def get_model_name(self, model_name):
if model_name == 'Unet' and self.sample_slices == 1:
return 'Unet-2D'
if model_name == 'Unet' and self.sample_slices == 3:
return 'Unet-2.5D'
if model_name == 'NestedUnet':
return 'Unet++'
if model_name == 'offical_transUnet':
return 'transUnet'
if model_name ==' MNet':
return 'Mnet'
if model_name == 'UnetASPP':
return 'Base+ASPP'
return model_name
if __name__ == '__main__':
from config import args
root_dir = args.data_root_dir
dataset = args.dataset
process_type = args.process_type
print('Test information: ')
infer = inference(args, root_dir, dataset=dataset, process_type=process_type)
infer.run()