-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessor.py
356 lines (239 loc) · 13.2 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
'''
2D preprocess
'''
import os
import pickle
from matplotlib.pyplot import axis
import numpy as np
import SimpleITK as sitk
from collections import OrderedDict
from skimage.transform import resize
from scipy.ndimage import zoom
from os.path import join
from utils.generate_data_index import generate_dataset_json
from utils.file_utils import save_json, load_json, load_pickle, save_pickle
class Preprocessor:
def __init__(self, root_dir, dataset='BileDuct', mode='train'):
'''
root_dir: all datasets dir: '/home/sophia/zfx/data/' in ubuntu 20.04.
dataset: dataset name.
mode: 'train' or 'test.
if mode = 'train', then save all cropped and preprocessed data to check data conveniently.
if mode = 'test', then do not save cropped data, just return a list of preprocessed data.
'''
self.dataset_root_dir = join(root_dir, dataset)
self.raw_dir = join(self.dataset_root_dir, 'raw_data')
self.crop_dir = join(self.dataset_root_dir, 'cropped_data')
self.crop_dataset_json = join(self.crop_dir, 'crop_dataset.json')
self.preprocess_dir = join(self.dataset_root_dir, 'preprocessed_data')
self.preprocess_dataset_json = join(self.preprocess_dir, 'preprocess_dataset.json')
self.dataset = dataset
self.mode = mode
self.dataset_json = join(self.raw_dir, 'dataset.json')
# check if dataset json file exist, if not, generate it
# if not os.path.exists(self.dataset_json):
generate_dataset_json(dataset=self.dataset)
self.intensityproperties_file = join(self.crop_dir, 'intensityproperties.pkl')
self.check_file()
self.patch_size = 256
self.con_slices = 9
self.properties = None
self.resize_ct = lambda data, x, y: zoom(data, (1.0, self.patch_size / x, self.patch_size / y), order=3)
self.resize_seg = lambda data, x, y: zoom(data, (1.0, self.patch_size / x, self.patch_size / y), order=0)
def check_file(self):
if not os.path.exists(self.crop_dir):
os.mkdir(self.crop_dir)
if not os.path.exists(self.preprocess_dir):
os.mkdir(self.preprocess_dir)
def get_nonzero_box(self, mask):
mask_voxel_coords = np.where(mask != 0)
minzidx = int(np.min(mask_voxel_coords[0]))
maxzidx = int(np.max(mask_voxel_coords[0])) + 1
minxidx = int(np.min(mask_voxel_coords[1]))
maxxidx = int(np.max(mask_voxel_coords[1])) + 1
minyidx = int(np.min(mask_voxel_coords[2]))
maxyidx = int(np.max(mask_voxel_coords[2])) + 1
return [[minzidx, maxzidx], [minxidx, maxxidx], [minyidx, maxyidx]]
def save_nii_file(self, ct_arr, label_arr, label_file):
new_ct = sitk.GetImageFromArray(ct_arr)
new_ct.SetDirection(self.properties['itk_direction'])
new_ct.SetOrigin(self.properties['itk_origin'])
new_ct.SetSpacing(tuple(self.median_spacing[[2,1,0]]))
new_label = sitk.GetImageFromArray(label_arr)
new_label.SetDirection(self.properties['itk_direction'])
new_label.SetOrigin(self.properties['itk_origin'])
new_label.SetSpacing(tuple(self.median_spacing[[2,1,0]]))
sitk.WriteImage(new_ct, os.path.join(self.save_dir, 'ct', label_file))
sitk.WriteImage(new_label, os.path.join(self.save_dir, 'label', label_file))
print('save ' + label_file.split('.')[0] + ' nii file done...')
def _compute_stats(self, voxels):
if len(voxels) == 0:
return np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan
median = np.median(voxels)
mean = np.mean(voxels)
sd = np.std(voxels)
mn = np.min(voxels)
mx = np.max(voxels)
percentile_99_5 = np.percentile(voxels, 99.5)
percentile_00_5 = np.percentile(voxels, 00.5)
return median, mean, sd, mn, mx, percentile_99_5, percentile_00_5
def set_origin_properties(self, ct, liver_box, origin_shape, crop_shape, voxels):
self.properties = OrderedDict()
self.properties['liver_box'] = liver_box
self.properties['size'] = np.array(ct.GetSize())[[2, 1, 0]]
# self.properties['origin'] = np.array(ct.GetOrigin())[[2, 1, 0]]
# self.properties['spacing'] = np.array(ct.GetSpacing())[[2, 1, 0]]
self.properties['itk_origin'] = ct.GetOrigin()
self.properties['itk_spacing'] = ct.GetSpacing()
self.properties['itk_direction'] = ct.GetDirection()
self.properties['origin_shape'] = origin_shape
self.properties['crop_shape'] = crop_shape
if voxels is not None:
median, mean, sd, mn, mx, percentile_99_5, percentile_00_5 = self._compute_stats(voxels)
self.properties['median'] = median
self.properties['mean'] = mean
self.properties['sd'] = sd
self.properties['mn'] = mn
self.properties['mx'] = mx
self.properties['percentile_99_5'] = percentile_99_5
self.properties['percentile_00_5'] = percentile_00_5
def crop_data(self):
dataset_info = load_json(self.dataset_json)
crop_dataset_info = dataset_info
print('begin data cropping......')
all_voxels = []
for idx, path_dic in enumerate(dataset_info[self.mode]):
case_name = path_dic['name']
ct = sitk.ReadImage(path_dic['image'])
mask = sitk.ReadImage(path_dic['mask'])
label = sitk.ReadImage(path_dic['label'])
ct_arr = sitk.GetArrayFromImage(ct)
mask_arr = sitk.GetArrayFromImage(mask)
label_arr = sitk.GetArrayFromImage(label)
label_arr[label_arr > 1] = 0
mask_arr[mask_arr > 0] = 1
assert len(np.unique(label_arr)) == 2
liver_box = self.get_nonzero_box(mask = mask_arr)
if self.mode == 'train' and self.dataset == 'BileDuct':
if liver_box[0][0] -20 >= 0:
liver_box[0][0] -= 20
else:
liver_box[0][0] = 0
# get liver box
ct_liver = ct_arr[liver_box[0][0]:liver_box[0][1], liver_box[1][0]:liver_box[1][1], liver_box[2][0]:liver_box[2][1]].copy()
label_liver = label_arr[liver_box[0][0]:liver_box[0][1], liver_box[1][0]:liver_box[1][1], liver_box[2][0]:liver_box[2][1]].copy()
if self.mode == 'train':
# forgroung sample
temp_mask = label_liver > 0
voxels = list(ct_liver[temp_mask][::10])
all_voxels += voxels
else:
voxels = None
self.set_origin_properties(ct, liver_box=liver_box, origin_shape=ct_arr.shape, crop_shape=ct_liver.shape, voxels=voxels)
ct_liver, label_liver = np.expand_dims(ct_liver, axis=0), np.expand_dims(label_liver, axis=0)
all_data = np.vstack([ct_liver, label_liver])
# save cropped data and properties
np.save(os.path.join(self.crop_dir, "%s.npy" % case_name), all_data)
save_pickle(data = self.properties, path=join(self.crop_dir, "%s.pkl" % case_name))
# add crop image path and crop label path into json file
crop_dataset_info[self.mode][idx]['crop_npy'] = join(self.crop_dir, case_name + '.npy')
crop_dataset_info[self.mode][idx]['crop_pkl'] = join(self.crop_dir, case_name + '.pkl')
print('original shape: ', self.properties['size'], ' new shape: ', ct_liver[0].shape)
print(case_name + ' cropped done...')
if self.mode == 'train':
median, mean, sd, mn, mx, percentile_99_5, percentile_00_5 = self._compute_stats(all_voxels)
dataset_prop = OrderedDict()
dataset_prop['median'] = median
dataset_prop['mean'] = mean
dataset_prop['sd'] = sd
dataset_prop['mn'] = mn
dataset_prop['mx'] = mx
dataset_prop['percentile_99_5'] = percentile_99_5
dataset_prop['percentile_00_5'] = percentile_00_5
save_pickle(data=dataset_prop, path=join(self.intensityproperties_file))
print('The dataset intensity propertties have been calculated and saved done...')
save_json(crop_dataset_info, join(self.crop_dir, 'crop_dataset.json'))
print('Crop dataset json file have been saved done...\n')
def preprocess_data(self):
print('begin preprocessing...')
dataset_prop = pickle.load(open(self.intensityproperties_file, 'rb'))
mean_intensity = dataset_prop['mean']
std_intensity = dataset_prop['sd']
lower_bound = dataset_prop['percentile_00_5']
upper_bound = dataset_prop['percentile_99_5']
crop_dataset_info = load_json(self.crop_dataset_json)
if self.mode == 'test':
preprocess_dataset_info = load_json(self.preprocess_dataset_json)
preprocess_dataset_info['test'] = crop_dataset_info['test']
else:
preprocess_dataset_info = crop_dataset_info
for idx, path_dic in enumerate(crop_dataset_info[self.mode]):
case_name = path_dic['name']
data = np.load(path_dic['crop_npy'])
assert len(data.shape) == 4
# resize to 256 256
new_ct = self.resize_ct(data[0], data[0].shape[1], data[0].shape[2])
new_label = self.resize_seg(data[-1], data[-1].shape[1], data[-1].shape[2])
# normalization
new_ct = np.clip(new_ct, lower_bound, upper_bound)
new_ct = (new_ct - mean_intensity) / std_intensity
# trans to 2.5D: new_ct shape: (slices, self.con_slices, x, y); new_label shape: (slices, 1, x, y)
new_ct, new_label = self.trans25D(new_ct, new_label)
new_ct, new_label = np.expand_dims(new_ct, axis=0), np.expand_dims(new_label, axis=0)
new_data = np.vstack([new_ct, new_label])
# save data and properties
np.save(os.path.join(self.preprocess_dir, "%s.npy" % case_name), new_data)
preprocess_dataset_info[self.mode][idx]['preprocess_npy'] = join(self.preprocess_dir, case_name + '.npy')
preprocess_dataset_info[self.mode][idx]['preprocess_pkl'] = path_dic['crop_pkl']
print(case_name + ' preprocessed done...')
print('new data infomation have been stored successfully...')
save_json(preprocess_dataset_info, join(self.preprocess_dir, 'preprocess_dataset.json'))
print('preprocess dataset json file have been saved done...')
def trans25D(self, ct, label):
assert self.con_slices % 2 == 1
slices_num = ct.shape[0]
#zeros_pad = np.zeros([self.patch_size, self.patch_size]).astype(ct.dtype)
left_pad, right_pad = ct[0], ct[slices_num-1]
expand_slices = self.con_slices // 2
expand_ct = np.insert(ct, [0]*expand_slices, left_pad, axis=0)
expand_ct = np.insert(expand_ct, [expand_ct.shape[0]]*expand_slices, right_pad, axis=0)
# expand_ct = np.insert(ct, [0]*expand_slices + [slices_num]*expand_slices, zeros_pad, axis = 0)
new_ct = np.array([expand_ct[i:i+self.con_slices].copy() for i in range(slices_num)])
return new_ct, np.repeat(np.expand_dims(label, 1), self.con_slices, 1)
def generate_path_index(self):
data_name_list = [f for f in os.listdir(self.preprocess_dir) if f.find('npy') != -1]
data_num = len(data_name_list)
print('data_num: ', data_num)
self.write_name_list(data_name_list, "data_path_info.txt")
print('path index have been created successfully')
def write_name_list(self, name_list, file_name):
f = open(os.path.join(self.preprocess_dir, file_name), 'w')
for name in name_list:
data_path = os.path.join(self.preprocess_dir, name.replace('pkl', 'npy'))
properties_path = os.path.join(self.preprocess_dir, name)
f.write(data_path + ' ' + properties_path + "\n")
f.close()
def split_train_val(self):
self.split_json_dir = join(self.preprocess_dir, 'split_train_val.json')
preprocess_dataset_json = load_json(self.preprocess_dataset_json)
split_json = {}
split_json['name'] = preprocess_dataset_json['name']
split_json['test'] = preprocess_dataset_json['test']
train_list, val_list = [], []
for idx, dic in enumerate(preprocess_dataset_json['train']):
if dic['name'] == 'BileDuct_009' or dic['name'] == 'BileDuct_016' or dic['name'] == 'BileDuct_023':
val_list.append(dic)
else:
train_list.append(dic)
split_json['train'] = train_list
split_json['val'] = val_list
save_json(split_json, self.split_json_dir)
print('dataset have been splited to train and val done...')
if __name__ == '__main__':
from config import args
root_dir = args.data_root_dir
dataset = args.dataset
preprocess = Preprocessor(root_dir, dataset=dataset, mode='train')
preprocess.crop_data()
preprocess.preprocess_data()
preprocess.split_train_val()