-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfast_auc.cpp
272 lines (239 loc) · 7.02 KB
/
fast_auc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
#include <algorithm>
#include<iostream>
#include<fstream>
#include<vector>
#define MAX_STRING 100
using namespace std;
static int (*info)(const char *fmt,...) = &printf;
char predict_result_file[MAX_STRING], origin_data_file[MAX_STRING];
int pf = -1, lf = -1, olf = -1;
vector<string> sepstr(const string &sStr, const string &sSep, bool withEmpty=false)
{
vector<string> vt;
string::size_type pos = 0;
string::size_type pos1 = 0;
while(true)
{
string s;
pos1 = sStr.find_first_of(sSep, pos);
if(pos1 == string::npos)
{
if(pos + 1 <= sStr.length())
{
s = sStr.substr(pos);
}
}
else if(pos1 == pos)
{
s = "";
}
else
{
s = sStr.substr(pos, pos1 - pos);
pos = pos1;
}
if(withEmpty)
{
vt.push_back(s);
}
else
{
if(!s.empty())
{
vt.push_back(s);
}
}
if(pos1 == string::npos)
{
break;
}
pos++;
}
return vt;
}
struct Pred
{
int real; //real label, 0:negative sample, 1:positive sample
double p; //probability of prediction
Pred():real(0),p(0) {}
};
typedef std::vector<Pred> PredArray;
bool pred_cmp(const Pred& a, const Pred& b)
{
return a.p < b.p;
}
double fast_auc(PredArray& pred_arr)
{
if (pred_arr.empty()) return 0.0;
std::stable_sort(pred_arr.begin(), pred_arr.end(), pred_cmp);
int nfalse = 0;
double auc = 0.0;
for (size_t i = 0; i < pred_arr.size(); i++)
{
int y = pred_arr[i].real;
nfalse += (1 - y);
auc += y * nfalse;
}
auc /= (nfalse * double((pred_arr.size() - nfalse)));
return auc;
}
int ArgPos(char *str, int argc, char **argv) {
int a;
for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
printf("Argument missing for %s\n", str);
exit(1);
}
return a;
}
return -1;
}
int computeAuc()
{
int correct = 0;
int tp = 0, fp = 0, tn = 0, fn = 0;
int total = 0;
double error = 0;
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
PredArray predArr;
std::vector<int> realLabels;
//use label field in prediction result file by first
if (origin_data_file[0] != 0 && olf >= 0 && lf < 0)
{
ifstream ifile;
ifile.open(origin_data_file);
if (!ifile.is_open())
{
cerr << "can not open file[" << origin_data_file << "]" << endl;
return -1;
}
int64_t lineNum = 0;
string buffer;
while (ifile.good() && getline(ifile, buffer))
{
vector<string> segs = sepstr(buffer, " \t");
if ((int)segs.size() > olf)
{
realLabels.push_back(atoi(segs[olf].c_str()));
}
++lineNum;
}
cout<<"Origin data file lines:"<<lineNum
<<",real labels size:"<<realLabels.size()<<endl;
ifile.close();
}
ifstream ifile;
ifile.open(predict_result_file);
if (!ifile.is_open())
{
cerr << "can not open file[" << predict_result_file << "]" << endl;
return -1;
}
std::vector<double> predicts;
int64_t lineNum = 0;
string buffer;
while (ifile.good() && getline(ifile, buffer))
{
vector<string> segs = sepstr(buffer, " \t");
//if there is no prediction result for some samples
if ((int)segs.size() <= pf)
{
cerr<<"probility field cannot be found, line:"<<lineNum<<endl;
return -1;
}
predicts.push_back(atof(segs[pf].c_str()));
if (lf >= 0 && (int)segs.size() > lf)
{
realLabels.push_back(atoi(segs[lf].c_str()));
}
++lineNum;
}
if (realLabels.size() != predicts.size())
{
cerr<<"label size is not equal to predict size:"<<realLabels.size()
<<"!="<<predicts.size()<<endl;
return -1;
}
for (size_t i = 0; i < predicts.size(); i++)
{
double p = predicts[i];
int target_label = (realLabels[i] == 1 ? 1 : 0);
int predict_label = (p > 0.5 ? 1 : 0);
Pred pred;
pred.real = (target_label==1 ? 1 : 0);
pred.p = p;
predArr.push_back(pred);
if (predict_label == target_label)
{
++correct;
if (target_label == 1)
tp++;
else
tn++;
}
else
{
if (target_label == 1)
fn++;
else
fp++;
}
error += (predict_label-target_label)*(predict_label-target_label);
sump += predict_label;
sumt += target_label;
sumpp += predict_label*predict_label;
sumtt += target_label*target_label;
sumpt += predict_label*target_label;
++total;
}
info("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
info("TP = %d, TN = %d, FP = %d, FN = %d\n",tp, tn, fp, fn);
double precision = (double)100*tp/(tp+fp);
double recall = (double)100*tp/(tp+fn);
double f1score = 2 * precision * recall / (precision + recall);
info("Precision = %g%%\n", precision);
info("Recall = %g%%\n", recall);
info("F1-score = %g%%\n", f1score);
if (predArr.size())
{
info("AUC = %g\n",fast_auc(predArr));
}
return 0;
}
int main(int argc, char **argv)
{
int i;
if (argc == 1)
{
printf("AUC fast compute toolkit v1.0\n\n");
printf("Options:\n");
printf("\t-result <file>\n");
printf("\t\tPredict result file\n");
printf("\t-pf <int>\n");
printf("\t\tThe predict probability field index of line in the result file\n");
printf("\t-lf <int>\n");
printf("\t\tThe real label field index of line in the result file; if not has, do not set and keep default -1\n");
printf("\t-origin_data <file>\n");
printf("\t\tThe origin data file before prediction\n");
printf("\t-olf <int>\n");
printf("\t\tThe real label field index of line in the origin data file\n");
printf("\nExamples:\n");
printf("./compute_auc -result predict_result.txt -pf 0 -lf 1\n");
printf("./compute_auc -result predict_result.txt -pf 0 -origin_data test_data.txt -olf 0\n");
return 0;
}
predict_result_file[0] = 0;
origin_data_file[0] = 0;
if ((i = ArgPos((char *)"-result", argc, argv)) > 0) strcpy(predict_result_file, argv[i + 1]);
if ((i = ArgPos((char *)"-pf", argc, argv)) > 0) pf = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-lf", argc, argv)) > 0) lf = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-origin_data", argc, argv)) > 0) strcpy(origin_data_file, argv[i + 1]);
if ((i = ArgPos((char *)"-olf", argc, argv)) > 0) olf = atoi(argv[i + 1]);
computeAuc();
return 0;
}