-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
150 lines (115 loc) · 6.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import time
# Define a function for currency formatting (e.g., for GBP (£))
def currency_formatter(x, pos=None):
"""
Format with £ and 2 decimal places
"""
return f'£{x:,.2f}'
def wagering_sim_with_history_bal(start_bal, WR, av_stake, seed=None):
"""
Simulate a wagering requirement with balance and total bet tracking.
"""
if seed is not None:
np.random.seed(seed)
k = WR
x0 = start_bal
bal = x0
total_bet = 0
no_bets = 0
history = {'spins': [0], 'balance': [round(bal, 2)], 'total_bet': [0]}
while bal >= 0.05:
stake = min(av_stake, bal - (bal % 0.05))
total_bet += stake
# Check if we've met the wagering requirement after updating total_bet
if total_bet >= k * x0:
# Record the final state when total_bet meets or exceeds the requirement
history['spins'].append(no_bets + 1)
history['balance'].append(bal)
history['total_bet'].append(total_bet)
break
# Simulate the outcome of the spin and update balance
xt = np.random.choice([0, 1, 3, 11], p=[0.55, 0.234, 0.21, 0.006])
bal += stake * (xt - 1)
bal = round(bal, 2)
no_bets += 1
# Record the spin details
history['spins'].append(no_bets)
history['balance'].append(bal)
history['total_bet'].append(total_bet)
# Stop if balance is insufficient for another spin
if bal <= 0:
break
return pd.DataFrame(history)
def main():
st.title("🍒 Wagering Requirement Simulator 🍒")
st.write("""
Welcome to the Wagering Requirement Simulator! This implements a simulation on the Behavioural Insights Team's Fruit Rush, an in-house slot game.
To win money from a wagering requirement in the UK you have to bet a certain multiple of your starting balance before you run out of money. If you go bust, you have to play with your own money. If you succeed, you can withdraw the "bonus" funds.
Start a simulation by clicking **"Attempt to hit the WR"**.
Have a play around with the starting balance, stake size and wagering requirement and see what impacts (i) your final balance and (ii) your chances of winning money. You can check your intuitions in section one of [BIT's technical report on wagering requirements](https://www.bi.team/publications/what-do-people-think-are-the-chances-of-winning-money-from-a-wagering-requirement-supplementary-results-to-the-main-report/).
""")
# Input parameters
start_bal = st.number_input("Starting Balance (£)", min_value=0.05, value=0.50, step=0.05)
WR = st.number_input("Wagering Requirement Multiplier", min_value=1, value=3)
av_stake = st.number_input("Average Stake per Spin (£)", min_value=0.05, value=0.10, step=0.05)
# Additional settings for random seed
with st.expander("Additional Settings"):
seed_input = st.text_input("Random Seed (optional)", value="")
seed = int(seed_input) if seed_input.strip().isdigit() else None
if st.button("Attempt to hit the WR"):
# Run the simulation
data = wagering_sim_with_history_bal(start_bal, WR, av_stake, seed)
# Initialize the plot with Matplotlib
fig, ax = plt.subplots(figsize=(10, 6))
# Set up the WR Target line
ax.axhline(y=WR * start_bal, color="#4D4F53", linestyle='--', label=f'WR Target ({currency_formatter(WR * start_bal)})')
# Set y-axis formatting and labels
ax.yaxis.set_major_formatter(FuncFormatter(currency_formatter))
ax.set_title('Wagering Requirement Simulation')
ax.set_xlabel('Number of Spins')
ax.set_ylabel('Amount (£)')
ax.legend()
# Set axis limits and grid, fixing the x-axis range to the total number of spins
max_y = max(data['balance'].max(), start_bal, WR * start_bal) + 0.1
ax.set_ylim(-0.01, max_y)
ax.set_xlim(0, data['spins'].iloc[-1]) # Fixed x-axis range
ax.grid(True, which='both', linestyle='--', linewidth=0.5, color='#EEEEEE')
# Placeholder for the animation
plot_placeholder = st.empty()
# Animation loop: plot each point incrementally
for i in range(1, len(data)):
ax.clear() # Clear the axis to redraw
# Re-plot the WR Target line and set fixed x-axis range
ax.axhline(y=WR * start_bal, color="#4D4F53", linestyle='--', label=f'WR Target ({currency_formatter(WR * start_bal)})')
ax.plot(data['spins'][:i+1], data['total_bet'][:i+1], marker='o', color='#E59AAA', label='Total Staked', alpha=0.8)
ax.plot(data['spins'][:i+1], data['balance'][:i+1], marker='o', color='#0098db', label='Balance', alpha=0.8)
# Re-format y-axis with currency and set x-axis range
ax.yaxis.set_major_formatter(FuncFormatter(currency_formatter))
ax.set_xlim(0, data['spins'].iloc[-1]) # Fixed x-axis range
# Set labels, title, and legend for each frame
ax.set_title('Wagering Requirement Simulation')
ax.set_xlabel('Number of Spins')
ax.set_ylabel('Amount (£)')
ax.legend()
# Set limits and grid for each frame
ax.set_ylim(-0.01, max_y)
ax.grid(True, which='both', linestyle='--', linewidth=0.5, color='#EEEEEE')
# Display the updated plot
plot_placeholder.pyplot(fig)
# Small delay to control the speed of the animation
time.sleep(1/(len(data)-1))
# Display the outcome only after the animation completes
total_bet_left = WR * start_bal - data['total_bet'].iloc[-1]
if data['balance'].iloc[-1] <= 0:
st.error(f"You lost with £{total_bet_left:.2f} left to bet. Try again?")
elif data['total_bet'].iloc[-1] >= WR * start_bal:
st.success(f"You won and would be able to take away £{data['balance'].iloc[-1]:.2f}!")
else:
st.info(f"You ended with £{data['balance'].iloc[-1]:.2f} and £{total_bet_left:.2f} left to bet.")
if __name__ == "__main__":
main()