-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_experiments.py
61 lines (47 loc) · 1.89 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
from experiments import experiments
from sklearn.externals import joblib
from dnn import DNN
import numpy as np
# Set GPU here
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
# Set data directory here
OUTPUT_DIR = '../../data/output/'
# Model variables that we are not experimenting with
N_FRAMES = 9 # number of context frames for prediction
BATCH_SIZE = 128
N_EPOCHS = 100
# Used to load the dataset created by prepare_data.py
def create_path(params):
path = ''
for key in params.keys():
path += key + '=' + str(params[key]) + '/'
return path
# Load up the data specified by the experiment. First need to run prepare_data.py
# to create datasets
for experiment in experiments:
SAVE_DIR = OUTPUT_DIR + create_path(experiment)
fe = joblib.load(SAVE_DIR + 'fe')
if experiment['phase'] in ('imaged', 'cheated'):
X_train = fe.X_train
Y_train = fe.Y_train
X_val = fe.X_val
Y_val = fe.Y_val
elif experiment['phase'] == 'regression':
# The following to train with phase regression
X_train = np.hstack([fe.X_train, fe.X_train_phase])
Y_train = np.hstack([fe.Y_train, fe.Y_train_phase])
X_val = np.hstack([fe.X_val, fe.X_val_phase])
Y_val = np.hstack([fe.Y_val, fe.Y_val_phase])
n_train, n_input = X_train.shape
n_val, _ = X_val.shape
_, n_output = Y_train.shape
if experiment['model'] == 'dnn':
dnn = DNN(name=SAVE_DIR + 'model.snapshot', fe=fe, n_input=n_input*N_FRAMES, n_output=n_output)
# Create frame generator for training
data = dnn.frame_generator(X_train, Y_train,
n_frames=N_FRAMES, batch_size=BATCH_SIZE)
data_val = dnn.frame_generator(X_val, Y_val,
n_frames=N_FRAMES, batch_size=BATCH_SIZE)
# Create model to train - replace with GMM\linear regression here
dnn.fit_generator(data, data_val, n_train, n_val, N_EPOCHS)