-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathprepare_datasets.py
60 lines (46 loc) · 2.15 KB
/
prepare_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from experiments import experiments
from sklearn.externals import joblib
from feature_extraction import FeatureExtraction
import os
SPEAKER1_TRAIN = '../../data/vctk/speaker1/speaker1-train-files.txt'
SPEAKER1_VAL = '../../data/vctk/speaker1/speaker1-val-files.txt'
SPEAKER1_DATA = '../../data/vctk/VCTK-Corpus/wav48/p225/'
MULTISPEAKER_TRAIN = '../../data/vctk/multispeaker/vctk-train-files.txt'
MULTISPEAKER_VAL = '../../data/vctk/multispeaker/vctk-val-files-subset.txt'
MULTISPEAKER_DATA = '../../data/vctk/VCTK-Corpus/wav48/'
MUSIC_TRAIN = '../../data/music/music_train.npy'
MUSIC_VAL = '../../data/music/music_valid.npy'
MUSIC_DATA = ''
OUTPUT_DIR = '../../data/output/'
def create_path(params):
path = ''
for key in params.keys():
path += key + '=' + str(params[key]) + '/'
return path
# Loop over the experiments create necessary datasets and save to paths
for experiment in experiments:
if experiment['dataset'] == 'speaker1':
fe = FeatureExtraction(train_files=SPEAKER1_TRAIN,
val_files=SPEAKER1_VAL,
data_dir=SPEAKER1_DATA,
dataset='vctk',
upsample=experiment['upsample'])
SAVE_DIR = OUTPUT_DIR + create_path(experiment)
elif experiment['dataset'] == 'multispeaker':
fe = FeatureExtraction(train_files=MULTISPEAKER_TRAIN,
val_files=MULTISPEAKER_VAL,
data_dir=MULTISPEAKER_DATA,
dataset='vctk',
upsample=experiment['upsample'],
train_subsample=experiment['subsample'])
SAVE_DIR = OUTPUT_DIR + create_path(experiment)
elif experiment['dataset'] == 'music':
fe = FeatureExtraction(train_files=MUSIC_TRAIN,
val_files=MUSIC_VAL,
data_dir=MUSIC_DATA,
dataset='music',
upsample=experiment['upsample'])
SAVE_DIR = OUTPUT_DIR + create_path(experiment)
print "Saving output to:", SAVE_DIR
os.makedirs(SAVE_DIR)
joblib.dump(fe, SAVE_DIR + 'fe')