-
Notifications
You must be signed in to change notification settings - Fork 0
/
13 Longest Sequence by Adjacent Numbers.cpp
167 lines (124 loc) · 3.04 KB
/
13 Longest Sequence by Adjacent Numbers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/**
Problem : Longest Sequence formed by adjacent numbers in a matrix
Given a N*N matrix where each cell has distinct value in the 1 to N * N
Find the longest sequence formed by adjacent numbers in the matrix such that
for each number, the number on the adjacent neighbor is +1 its value
**/
/**Which of the favors of your Lord will you deny ?**/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>
using indexed_set = tree<
TIn, null_type, less<TIn>,
rb_tree_tag, tree_order_statistics_node_update>;
/*
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
*/
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 2e3+7;
const LL LINF = 1e17;
string to_str(LL x)
{
stringstream ss;
ss<<x;
return ss.str();
}
//bool cmp(const PII &A,const PII &B)
//{
//
//}
int r = 5, c = 5;
int ara[6][6] =
{
{ 0, 0, 0, 0, 0, 0 },
{ 0, 10, 13, 14, 21, 23 },
{ 0, 11, 9, 22, 2, 3 },
{ 0, 12, 8, 1, 5, 4 },
{ 0, 15, 24, 7, 6, 20 },
{ 0, 16, 17, 18, 19, 25 }
};
/** 1 based indexing **/
/**
dp[i][j] = longest sequence starting from ara[i][j]
dp[i][j] = 1 + solve(next move) // if curr-next = 1
**/
int dx[] = {-1,0,1,0};
int dy[] = {0,1,0,-1};
bool isValid(int i,int j)
{
if(i>=1 && i<=r && j>=1 && j<=c)
return true;
return false;
}
int dp[nmax][nmax];
int dfs(int i,int j)
{
if(!isValid(i,j))
return 0;
int &ret = dp[i][j];
if(ret!=-1) return ret;
for(int k=0;k<4;k++)
if(isValid(i+dx[k],j+dy[k]) && ara[i+dx[k]][j+dy[k]]-ara[i][j]==1)
return ret = 1 + dfs(i+dx[k],j+dy[k]);
return ret = 1;
}
string find_path(int i,int j)
{
if(!isValid(i,j))
return "";
for(int k=0;k<4;k++)
if(isValid(i+dx[k],j+dy[k]) && ara[i+dx[k]][j+dy[k]]-ara[i][j]==1)
return to_str(ara[i][j]) + " " + find_path(i+dx[k],j+dy[k]);
return to_str(ara[i][j]);
}
int main()
{
optimizeIO();
memset(dp,-1,sizeof dp);
int maxx = 0;
PII maxx_idx = {0,0};
for(int i=1;i<=r;i++)
{
for(int j=1;j<=c;j++)
{
if(dp[i][j]!=-1)
continue;
int val = dfs(i,j);
if(val>maxx)
{
maxx = val;
maxx_idx = {i,j};
}
}
}
cout<<maxx<<endl;
cout<<find_path(maxx_idx.F,maxx_idx.S)<<endl;
// for(int i=1;i<=r;i++)
// {
// for(int j=1;j<=c;j++)
// cout<<dp[i][j]<<" ";
// cout<<endl;
// }
return 0;
}