-
Notifications
You must be signed in to change notification settings - Fork 0
/
19 Merge Sort Tree 2.cpp
283 lines (208 loc) · 4.67 KB
/
19 Merge Sort Tree 2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/**
PROBLEM : Array of N integers
Query(l,r,k) : number of integers < k in the range [l,r]
Query Modifications
===================
Type 1 : number of integers >= OR <= in a range
======
( Mod 0 ) number of integers less < k in the range [l,r] : lower_bound(ALL(Tree[cur].v),k) - Tree[cur].v.begin();
0 1 2 ... k-1 k k+1...
--------------^-------
( Mod 1 ) number of integers less <= k in the range [l,r] : upper_bound(ALL(Tree[cur].v),k) - Tree[cur].v.begin();
0 1 2 ... k-1 k k k k k k k+1...
----------------------------^----
(Mod 2 ) number of integers x such that ( a <= x <= b ) : upper_bound(ALL(Tree[cur].v),b) - lower_bound(ALL(Tree[cur].v),a);
0 1 2 ... a a a a a a ..... b b b b b b+1...
----------^----------------------------^----
Type 2 : smallest number greater or equal to a specified number k
======
if(end<l || start>r)
return INT_MAX;
-----------------------
auto pos = lower_bound(ALL(Tree[cur].v),k)
if(pos != Tree[cur].v.end())
return *pos;
return INF;
------------------------
return min(p1,p2);
=========================================================================================================================
DATA STRUCTURE
--------------
MERGE SORT TREE
Complexity
----------
Build : O( N (logN)^2 )
Query : O( (logN)^2 )
Update : O( (logN)^2 )
Memory : O( NlogN )
RESOURCE
--------
1) https://www.commonlounge.com/discussion/d871499b49e443259cfbea9b16f9b958
2) https://cp-algorithms.com/data_structures/segment_tree.html
**/
/**Which of the favors of your Lord will you deny ?**/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>
using indexed_multiset = tree<
pair<TIn,TIn>, null_type, less< pair<TIn,TIn> >,
rb_tree_tag, tree_order_statistics_node_update>;
/**
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
**/
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 1e5+7;
const LL LINF = 1e17;
string to_str(LL x)
{
stringstream ss;
ss<<x;
return ss.str();
}
//bool cmp(const PII &A,const PII &B)
//{
//
//}
int ara[nmax];
/** Merge Sort Tree **/
struct node
{
indexed_multiset<int> MS;
void create_leaf(int val,int id)
{
MS.insert({val,id});
}
void merge_nodes(node &A,node &B)
{
for(auto x:A.MS)
MS.insert(x);
for(auto x:B.MS)
MS.insert(x);
}
};
const int nmax2 = nmax<<2;
node Tree[nmax2];
void build(int cur,int start,int end) /** build the segment tree **/
{
if(start==end)
{
Tree[cur].create_leaf(ara[start],start);
return;
}
int mid = (start+end)>>1;
int lc = cur<<1, rc = lc|1;
build(lc,start,mid);
build(rc,mid+1,end);
Tree[cur].merge_nodes(Tree[lc],Tree[rc]);
}
int query(int cur,int start,int end,int l,int r,int k) /** RANGE query **/
{
if(end<l || start>r)
return 0;
if(start>=l && end<=r)
{
return Tree[cur].MS.order_of_key({k,0});
}
int mid = (start+end)>>1;
int lc = cur<<1, rc = lc|1;
int p1 = query(lc,start,mid,l,r,k);
int p2 = query(rc,mid+1,end,l,r,k);
return p1 + p2;
}
void update(int cur,int start,int end,int id,int val)
{
Tree[cur].MS.erase(Tree[cur].MS.lower_bound({ara[id],0}));
Tree[cur].MS.insert({val,id});
if(start==end)
{
ara[id] = val;
}
else
{
int mid = (start + end)>>1;
int lc = cur<<1, rc = lc|1;
if (id <= mid)
update(lc, start, mid, id, val);
else
update(rc, mid+1, end, id, val);
}
}
int main()
{
optimizeIO();
int n,q;
cin>>n>>q;
for(int i=1; i<=n; i++)
{
cin>>ara[i];
}
build(1,1,n);
while(q--)
{
int type,l,r,k ,id,val;
cin>>type;
if(type==1)
{
cin>>l>>r>>k;
cout<<query(1,1,n,l,r,k)<<"\n";
}
else
{
cin>>id>>val;
update(1,1,n,id,val);
}
}
return 0;
}
/**
12 14
1 2 3 1 1 3 3 2 2 4 4 4
1 1 5 2
2 4 2
1 1 5 2
1 1 5 1
1 1 5 3
2 1 5
1 1 5 3
1 1 5 4
1 3 10 3
1 5 11 2
1 2 8 1
1 4 6 4
1 5 6 2
1 1 12 3
Output:
3
2
0
4
3
4
4
1
0
3
1
5
**/