-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path56 Max Flow Dinic.cpp
265 lines (203 loc) · 5.25 KB
/
56 Max Flow Dinic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/**
Maximum Flow Dinic
===================
Description
-----------
Given a directed network G = (V, E) with edge capacity c: E->R.
The algorithm finds a maximum flow.
Algorithm
---------
Dinic's Blocking Flow
Step 1 :
Construct Level Graph (LG) .
If sink can't be reached MAXFLOW has been achieved . Terminate .
Else continue
Step 2 :
Start at source , find an augmenting path in LG until you reach sink or get stuck.
Step 3 :
If reach sink : augment flow . Update LG (remove from LG edges with bottleneck capacity) and restart from source
else if stuck (aka blocking flow) : delete node from LG and restart from source.
Repeat Step 1 when there is no augmenting paths anymore .
Implementation Optimization
---------------------------
Dinic :
Dinic's idea to avoid dead end was to delete the nodes that we get stuck
Shimon Even and Alon Atai Optmization :
Pruning dead ends by tracking which next edge should be taken .
Complexity
----------
O(V^2 * E)
but very fast in practice.
In particular, for a unit capacity graph,
it runs in O(E min{E^{1/2}, V^{2/3}}).
Verified
--------
SPOJ FASTFLOW
Reference
---------
MOCHOW Bhai
**/
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define F first
#define S second
#define ALL(x) (x).begin(), (x).end()
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)
#ifndef ONLINE_JUDGE
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#else
#define DBG(x)
#define endl "\n"
#endif
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 2e5+7;
/**
Dinic
0 based indexing
**/
struct Dinic
{
typedef long long flow_type;
struct Edge{
int src,dst;
flow_type capacity , flow;
size_t rev; /// position of the reverse edge in destinations's adj list
};
int n, source, sink;
vector<vector<Edge>> adj;
vector<int>level , next_iter;
/// next_iter : Shimon Even and Alon Atai Optmization
Dinic(int n) : n(n) , adj(n) , level(n) , next_iter(n) {}
void add_edge(int src,int dst,flow_type capacity)
{
Edge forward{src,dst,capacity,0,adj[dst].size()};
Edge reverse{dst,src,0,0,adj[src].size()};
adj[src].push_back(forward);
adj[dst].push_back(reverse); /// adding this edge for reverse graph
}
int level_graph()
{
level.assign(n,-1);
level[source] = 0;
queue<int>Q;
Q.push(source);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(u==sink) break;
for(auto &e:adj[u])
{
if(level[e.dst] == -1 && e.capacity - e.flow > 0)
{
level[e.dst] = level[u] + 1;
Q.push(e.dst);
}
}
}
return level[sink];
}
flow_type dfs(int u,flow_type amount)
{
if(u==sink) return amount;
for(int &it = next_iter[u] ;it<(int)adj[u].size();it++) /// by tracking iterator this way , we won't have to delete the edges with bottleneck capacity : Shimon Even and Alon Atai Optmization
{
Edge &e = adj[u][it] , &r = adj[e.dst][e.rev];
int v = e.dst;
if(level[v]>level[u] && e.capacity-e.flow > 0)
{
flow_type bottleneck = dfs(v,min(amount,e.capacity-e.flow));
if(bottleneck>0)
{
e.flow += bottleneck;
r.flow -= bottleneck;
return bottleneck;
}
}
}
return flow_type(0);
}
flow_type max_flow(int source,int sink)
{
this->source = source;
this->sink = sink;
flow_type MAXFLOW = 0;
flow_type bottleneck = -1;
while(level_graph() >= 0)
{
bottleneck = -1;
fill(ALL(next_iter),0);
while(bottleneck != 0)
{
bottleneck = dfs(source,LLONG_MAX);
MAXFLOW += bottleneck;
}
}
return MAXFLOW;
}
};
int main()
{
optimizeIO();
int nodes;
cin>>nodes;
Dinic dn(nodes);
int edges;
cin>>edges;
while(edges--)
{
int a,b;
LL cap;
cin>>a>>b>>cap;
a-- , b--; /** making 0 based indexing **/
dn.add_edge(a,b,cap);
}
LL MAXFLOW = dn.max_flow(0,nodes-1);
cout<<MAXFLOW<<endl;
return 0;
}
/**
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" " ;
}
os<<" ]";
return os;
}
template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}