-
Notifications
You must be signed in to change notification settings - Fork 0
/
27 Euler Totient.cpp
208 lines (167 loc) · 4.29 KB
/
27 Euler Totient.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;
/**
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 1e6+7;
const LL LINF = 1e17;
template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}
//bool cmp(const PII &A,const PII &B)
//{
//
//}
/** Bit Sieve **/
const int pnmax = 1e8+7;
LL LIM;
bitset<pnmax> bs; /// can sieve upto 1e8 in ~ 1 sec
vector<LL> primes;
void bit_sieve(LL upperbound)
{
LIM = upperbound + 1;
bs.set(); /// set all bits to 1
bs[0] = bs[1] = 0;
for (LL i = 2; i <= LIM; i++) /** If I don't want to know the primes , it is enough to loop upto sqrt(LIM) here **/
if (bs[i])
{
for (LL j = i * i; j <= LIM; j += i)
bs[j] = 0;
primes.push_back(i);
}
}
bool isPrime(LL N)
{
if (N <= LIM)
return bs[N]; /// O(1) for small primes
/** note: only work for N <= (last prime in "primes" vector)^2 . So, if Sieve is done upto 10^6 , can know isPrime upto 10^12 **/
for (LL x:primes)
if (N % x == 0)
return false;
return true; /// it takes longer time if N is a large prime!
}
/** calculates Euler Totient of n **/
LL eulerPhi(LL n)
{
LL res = n;
LL sqrtn = sqrtl ( n );
for ( LL i = 0; i < primes.size() && primes[i] <= sqrtn; i++ )
{
if ( n % primes[i] == 0 )
{
while ( n % primes[i] == 0 )
{
n /= primes[i];
}
sqrtn = sqrtl ( n );
res /= primes[i];
res *= primes[i] - 1;
}
}
if ( n != 1 )
{
res /= n;
res *= n - 1;
}
return res;
}
/** calculates Euler Totient from 1 to n **/
LL phi[nmax];
void eulerPhi_upto_n(LL n)
{
for (int i=1; i<=n; i++)
phi[i] = i; /// indicates not evaluated yet and initializes for product formula.
for (int p=2; p<=n; p++) /// Compute other Phi values
{
if (phi[p] == p) /// If phi[p] is not computed already, then number p is prime
{
phi[p] = p-1; /// Phi of a prime number p is always equal to p-1.
for (int i = 2*p; i<=n; i += p) /// Update phi values of all multiples of p
phi[i] = (phi[i]/p) * (p-1); /// Add contribution of p to its multiple i by multiplying with (1 - 1/p)
}
}
// // Print precomputed phi values
// for (int i=1; i<=n; i++)
// cout << "Totient of " << i << " is "
// << phi[i] << endl;
}
int main()
{
optimizeIO();
bit_sieve(1e6);
eulerPhi_upto_n(1e6);
while(1)
{
LL num;
cin>>num;
cout<<phi[num]<<endl;
cout<<eulerPhi(num)<<endl;
}
return 0;
}
/**
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}
template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}