-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path99-haskell-problems.hs
521 lines (401 loc) · 12.3 KB
/
99-haskell-problems.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
import Test.Tasty
import Test.Tasty.SmallCheck
import Test.SmallCheck.Series
import Test.Tasty.HUnit
import Data.List
import Control.Monad
main :: IO ()
main = defaultMain tests
tests :: TestTree
tests =
testGroup "99Problems"
[
-- testProperty "1" prop_myLast
-- , testProperty "2" prop_myLastButOne
-- , testProperty "3" prop_kth
-- , testProperty "4" prop_myLength
-- , group5
-- , group6
-- , group7
-- , group8
-- , group9
-- , group10
-- ,
group11
, group12
, group13
, group14
, group15
, group16
, group17
, group18
, group19
]
-- Problem 1
prop_myLast xs = length (xs :: [Int]) > 0 ==> myLast xs == last xs
myLast :: [a] -> a
myLast [x] = x
myLast (_:xs) = myLast xs
{- 2 Problem 2
(*) Find the last but one element of a list.
Example in Haskell:
Prelude> myButLast [1,2,3,4]
3
Prelude> myButLast ['a'..'z']
'y'
-}
prop_myLastButOne :: Monad m => [Int] -> Property m
prop_myLastButOne xs = length xs > 1 ==> myLastButOne xs == reverse xs !! 1
myLastButOne :: [a] -> a
myLastButOne (x:xs)
| length xs == 1 = x
| otherwise = myLastButOne xs
{- 3 Problem 3
(*) Find the K'th element of a list. The first element in the list is number 1.
Example:
* (element-at '(a b c d e) 3)
c
Example in Haskell:
Prelude> elementAt [1,2,3] 2
2
Prelude> elementAt "haskell" 5
'e'
-}
prop_kth xs x = x >= 0 && length (xs :: [Int]) > 0 ==> let k = mod x (length xs) in kth xs k == xs !! k
kth :: (Ord b, Num b) => [a] -> b -> a
kth xs i
| i <= 0 = head xs
| otherwise = kth (tail xs) (i - 1)
{- 4 Problem 4
(*) Find the number of elements of a list.
Example in Haskell:
Prelude> myLength [123, 456, 789]
3
Prelude> myLength "Hello, world!"
13
-}
prop_myLength :: [Int] -> Bool
prop_myLength xs = myLength xs == length xs
myLength :: [a] -> Int
myLength [] = 0
myLength [_] = 1
myLength (_:xs) = 1 + myLength xs
{-
- (*) Reverse a list.
-
- Example in Haskell:
-
- Prelude> myReverse "A man, a plan, a canal, panama!"
- "!amanap ,lanac a ,nalp a ,nam A"
- Prelude> myReverse [1,2,3,4]
- [4,3,2,1]
-}
group5 = testGroup "5" [
testProperty "symmetric" $
\xs -> (xs :: [Int]) == (myReverse $ myReverse xs)
, testProperty "reversed" $
\xs -> myReverse (xs :: [Int]) == reverse xs
]
myReverse :: [a] -> [a]
myReverse [] = []
myReverse [x] = [x]
myReverse (x:xs) = myReverse xs ++ [x]
{-
6 Problem 6
(*) Find out whether a list is a palindrome. A palindrome can be read forward or backward; e.g. (x a m a x).
Example in Haskell:
*Main> isPalindrome [1,2,3]
False
*Main> isPalindrome "madamimadam"
True
*Main> isPalindrome [1,2,4,8,16,8,4,2,1]
True
-}
palindromes :: String -> Char -> [String]
palindromes xs s = [even, odd]
where even = xs ++ (reverse xs)
odd = xs ++ [s] ++ (reverse xs)
group6 = testGroup "6" [
testProperty "positive" $
\xs s -> all isPalindrome (palindromes xs s)
]
isPalindrome :: Eq a => [a] -> Bool
isPalindrome xs = reverse xs == xs
-- TODO: WTF how do i generate a tree? How can I test that this instance of
-- Serial is correct???
data Tree a = Null | Fork (Tree a) a (Tree a)
instance Serial m a => Serial m (Tree a) where
series = cons0 Null \/ cons3 Fork
{-
(**) Flatten a nested list structure.
Transform a list, possibly holding lists as elements into a `flat' list by replacing each list with its elements (recursively).
Example:
* (my-flatten '(a (b (c d) e)))
(A B C D E)
Example in Haskell:
We have to define a new data type, because lists in Haskell are homogeneous.
data NestedList a = Elem a | List [NestedList a]
*Main> flatten (Elem 5)
[5]
*Main> flatten (List [Elem 1, List [Elem 2, List [Elem 3, Elem 4], Elem 5]])
[1,2,3,4,5]
*Main> flatten (List [])
[]
-}
group7 = testGroup "7 - flatten" [
testCase "empty list" $ flatten (List [] :: NestedList Int) @=? []
, testCase "single element list" $ flatten (Elem 5) @=? [5]
, testCase "nested list - simple" $ flatten (List [Elem 1]) @=? [1]
, testCase "nested list - complex" $
flatten (List [Elem 1, List [Elem 2, List [Elem 3, Elem 4], Elem 5]]) @=? [1, 2, 3, 4, 5]
]
data NestedList a = Elem a | List [NestedList a]
flatten :: NestedList a -> [a]
flatten (Elem x) = [x]
flatten (List []) = []
flatten (List xs) = xs >>= flatten
{-
Problem 8
(**) Eliminate consecutive duplicates of list elements.
If a list contains repeated elements they should be replaced with a single copy of the element. The order of the elements should not be changed.
Example:
* (compress '(a a a a b c c a a d e e e e))
(A B C A D E)
Example in Haskell:
> compress "aaaabccaadeeee"
"abcade"
-}
group8 = testGroup "compress" [
testCase "empty list" $ compress "" @=? []
, testCase "string" $ compress "aaaabccaadeeee" @=? "abcade"
]
compress :: Eq a => [a] -> [a]
compress [] = []
compress [x] = [x]
compress (x:xs)
| x == head xs = compress xs
| otherwise = x : compress xs
{-
9 Problem 9
(**) Pack consecutive duplicates of list elements into sublists. If a list contains repeated elements they should be placed in separate sublists.
Example:
* (pack '(a a a a b c c a a d e e e e))
((A A A A) (B) (C C) (A A) (D) (E E E E))
Example in Haskell:
*Main> pack ['a', 'a', 'a', 'a', 'b', 'c', 'c', 'a',
'a', 'd', 'e', 'e', 'e', 'e']
["aaaa","b","cc","aa","d","eeee"]
-}
group9 :: TestTree
group9 = testGroup "pack duplicates" [
testCase "complex case" $
["aaaa","b","cc","aa","d","eeee"] @=? pack "aaaabccaadeeee"
]
pack :: Eq a => [a] -> [[a]]
pack = foldr takeNode []
where takeNode x [] = [[x]]
takeNode x (y:xs)
| x == head y = (x : y) : xs
| otherwise = [x] : y : xs
{-
Problem 10
(*) Run-length encoding of a list. Use the result of problem P09 to implement the so-called run-length encoding data compression method. Consecutive duplicates of elements are encoded as lists (N E) where N is the number of duplicates of the element E.
Example:
* (encode '(a a a a b c c a a d e e e e))
((4 A) (1 B) (2 C) (2 A) (1 D)(4 E))
Example in Haskell:
encode "aaaabccaadeeee"
[(4,'a'),(1,'b'),(2,'c'),(2,'a'),(1,'d'),(4,'e')]
-}
group10 :: TestTree
group10 = testGroup "run-length encoding" [
testCase "empty string" $
[] @=? encode ""
, testCase "complex case" $
[(4,'a'),(1,'b'),(2,'c'),(2,'a'),(1,'d'),(4,'e')] @=? encode "aaaabccaadeeee"
]
encode :: Eq a => [a] -> [(Int,a)]
encode xs = map counter $ group xs
where counter ys = (length ys, head ys)
{-
Problem 11
(*) Modified run-length encoding.
Modify the result of problem 10 in such a way that if an element has no duplicates it is simply copied into the result list. Only elements with duplicates are transferred as (N E) lists.
Example:
* (encode-modified '(a a a a b c c a a d e e e e))
((4 A) B (2 C) (2 A) D (4 E))
Example in Haskell:
P11> encodeModified "aaaabccaadeeee"
[Multiple 4 'a',Single 'b',Multiple 2 'c',
Multiple 2 'a',Single 'd',Multiple 4 'e']
-}
group11 :: TestTree
group11 = testGroup "modified run-length encoding" [
testCase "empty string" $
[] @=? encodeModified ""
, testCase "complex case" $
[Multiple 4 'a', Single 'b', Multiple 2 'c', Multiple 2 'a', Single 'd', Multiple 4 'e'] @=? encodeModified "aaaabccaadeeee"
]
data Encoded a = Multiple Int a | Single a deriving (Show, Eq)
encodeModified :: Eq a => [a] -> [Encoded a]
encodeModified = map modify . encode
where modify (1, v) = Single v
modify (l, v) = Multiple l v
{-
Problem 12
(**) Decode a run-length encoded list.
Given a run-length code list generated as specified in problem 11. Construct its uncompressed version.
Example in Haskell:
P12> decodeModified
[Multiple 4 'a',Single 'b',Multiple 2 'c',
Multiple 2 'a',Single 'd',Multiple 4 'e']
"aaaabccaadeeee"
-}
group12 :: TestTree
group12 = testGroup "decode run-length encoded list" [
testCase "empty string" $
"" @=? decode []
, testCase "complex case" $
"aaaabccaadeeee" @=? decode [Multiple 4 'a', Single 'b', Multiple 2 'c', Multiple 2 'a', Single 'd', Multiple 4 'e']
]
decode :: [Encoded a] -> [a]
decode xs = xs >>= expand where
expand (Single x) = [x]
expand (Multiple n x) = replicate n x
{-
Problem 13
(**) Run-length encoding of a list (direct solution).
Implement the so-called run-length encoding data compression method directly. I.e. don't explicitly create the sublists containing the duplicates, as in problem 9, but only count them. As in problem P11, simplify the result list by replacing the singleton lists (1 X) by X.
Example:
* (encode-direct '(a a a a b c c a a d e e e e))
((4 A) B (2 C) (2 A) D (4 E))
Example in Haskell:
P13> encodeDirect "aaaabccaadeeee"
[Multiple 4 'a',Single 'b',Multiple 2 'c',
Multiple 2 'a',Single 'd',Multiple 4 'e']
-}
group13 :: TestTree
group13 = testGroup "direct encoding of run-length encoded list" [
testCase "empty string" $
[] @=? encodeDirect ""
, testCase "complex case" $
[Multiple 4 'a', Single 'b', Multiple 2 'c', Multiple 2 'a', Single 'd', Multiple 4 'e'] @=? encodeDirect "aaaabccaadeeee"
]
encodeDirect :: Eq a => [a] -> [Encoded a]
encodeDirect [] = []
encodeDirect ks = map singles multiples
where multiples = foldr f [] ks
f x [] = [Multiple 1 x]
f x l@((Multiple y v):xs)
| x == v = (Multiple (y + 1) v) : xs
| otherwise = Multiple 1 x : l
f _ _ = undefined
singles (Multiple 1 v) = Single v
singles xs = xs
{-
Problem 14
(*) Duplicate the elements of a list.
Example:
* (dupli '(a b c c d))
(A A B B C C C C D D)
Example in Haskell:
> dupli [1, 2, 3]
[1,1,2,2,3,3]
-}
group14 :: TestTree
group14 = testGroup "duplicate elements of a list" [
testCase "empty list" $
[] @=? dupli ([] :: [Int])
, testCase "full example" $
[1, 1, 2, 2, 3, 3] @=? dupli [1, 2, 3 :: Int]
]
dupli :: [a] -> [a]
dupli xs = xs >>= (replicate 2)
{-
Problem 15
(**) Replicate the elements of a list a given number of times.
Example:
* (repli '(a b c) 3)
(A A A B B B C C C)
Example in Haskell:
> repli "abc" 3
"aaabbbccc"
-}
group15 :: TestTree
group15 = testGroup "replicate the elements of a list a given number of times" [
testCase "empty list" $
"" @=? repli "" 5
, testCase "0 replications" $
"" @=? repli "abc" 0
, testCase "full example" $
"aaabbbccc" @=? repli "abc" 3
]
repli :: [a] -> Int -> [a]
repli xs k = xs >>= replicate k
{-
Problem 16
(**) Drop every N'th element from a list.
Example:
* (drop '(a b c d e f g h i k) 3)
(A B D E G H K)
Example in Haskell:
*Main> dropEvery "abcdefghik" 3
"abdeghk"
-}
group16 :: TestTree
group16 = testGroup "Drop every nth element from a list" [
testCase "empty list" $
"" @=? dropEvery "" 5
, testCase "0th elements" $
"abc" @=? dropEvery "abc" 0
, testCase "1th elements" $
"" @=? dropEvery "abc" 1
, testCase "full example" $
"abdeghk" @=? dropEvery "abcdefghik" 3
]
dropEvery :: [a] -> Int -> [a]
dropEvery xs 0 = xs
dropEvery [] _ = []
dropEvery xs k = map snd . filter (not . dividesK . fst) $ zip [1..] xs
where dividesK v = v `mod` k == 0
{-
Problem 17
(*) Split a list into two parts; the length of the first part is given.
Do not use any predefined predicates.
Example:
* (split '(a b c d e f g h i k) 3)
( (A B C) (D E F G H I K))
Example in Haskell:
*Main> split "abcdefghik" 3
("abc", "defghik")
-}
group17 :: TestTree
group17 = testGroup "split list into 2 parts" [
testCase "empty list" $
("", "") @=? split "" 0
, testCase "split at 0" $
("", "abc") @=? split "abc" 0
, testCase "split beyond size" $
("abc", "") @=? split "abc" 10
, testCase "full example" $
("abc", "defghik") @=? split "abcdefghik" 3
]
-- no predefined predicates!
-- Otherwise: split xs k = (take k xs, drop k xs)
split :: [a] -> Int -> ([a], [a])
split [] _ = ([], [])
split l@(x:xs) k
| k > 0 = (x : ys, zs)
| otherwise = ([], l)
where (ys, zs) = split xs (k - 1)
group18 :: TestTree
group18 = testGroup "18" []
group19 :: TestTree
group19 = testGroup "19" []
group20 :: TestTree
group20 = testGroup "20" []
group21 :: TestTree
group21 = testGroup "21" []
group22 :: TestTree
group22 = testGroup "22" []