-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_can_code.h
534 lines (424 loc) · 15.3 KB
/
graph_can_code.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
#ifndef _GRAPH_CAN_CODE_H
#define _GRAPH_CAN_CODE_H
using namespace std;
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <unordered_map>
#include "helper_funs.h"
template<typename V_T, typename E_T>
struct five_tuple;
template<typename V_T, typename E_T>
ostream& operator<< (ostream&, const five_tuple<V_T, E_T>&);
// NOTE: should the labels (_li, _lij, _lj) in thus struct be stored as
// references (to avoid copying them) ?? Will that work ??
/**
* \brief Storing a five_tuple that represent a labeled edge of a graph.
*
* <dfs_id1, dfs_id2, vertex_label1, edge_label, vertex_label2> are the 5-tuple.
* It is used as part of the canonical code of a graph.
*/
template<typename V_T, typename E_T>
struct five_tuple
{
five_tuple() {}
five_tuple(const int& id1, const int& id2, const V_T& li, const E_T& lij, const V_T& lj): _i(id1), _j(id2), _li(li), _lj(lj), _lij(lij) {}
bool operator== (const five_tuple<V_T, E_T>& rhs) const {
if((_i == rhs._i) && (_j == rhs._j) && (_li == rhs._li) &&
(_lj == rhs._lj) && (_lij == rhs._lij))
return true;
// When the dest id is negative and all other things are the same
// even then the tuples are the same.
if((_i == rhs._i) && (_j < 0) && (rhs._j < 0) && (_li == rhs._li) &&
(_lj == rhs._lj) && (_lij == rhs._lij))
return true;
return false;
}
bool operator< (const five_tuple<V_T, E_T>& rhs) const {
// follows ordering given on pg 10 of gSpan TR
bool is_fwd=(_i<_j);
bool rhs_is_fwd=(rhs._i<rhs._j);
if(!is_fwd && rhs_is_fwd) { // back-edge < forward-edge
return true;
}
if(!is_fwd && !rhs_is_fwd && _j<rhs._j) { // if both back edge, and _j < rhs._j
return true;
}
if(!is_fwd && !rhs_is_fwd && _j==rhs._j && _lij<rhs._lij) { // if both back edge, _j==rhs._j, and _lij < rhs._lij
return true;
}
// Added by VC...
if(!is_fwd && !rhs_is_fwd && _j==rhs._j && _lij==rhs._lij && _i<rhs._i) { // if both back edge, _j==rhs._j, and _lij == rhs._lij
return true;
}
if(is_fwd && rhs_is_fwd && _i>rhs._i) { // if both forward edge, _i > rhs._i
return true;
}
if(is_fwd && rhs_is_fwd && _i==rhs._i && _li<rhs._li) { // if both forward edge, _i == rhs._i and _li < rhs._li
return true;
}
if(is_fwd && rhs_is_fwd && _i==rhs._i &&
_li==rhs._li && _lij<rhs._lij) { // if both forward, _i == rhs._i, _li == rhs._li, then _lij < rhs._lij
return true;
}
if(is_fwd && rhs_is_fwd && _i==rhs._i && _li==rhs._li &&
_lij==rhs._lij && _lj<rhs._lj) { // if both forward, _i == rhs._i, _lij == rhs._lij, _lj<rhs._lj
return true;
}
// Added by VC...
// If both forward, everything same other than the destination
if(is_fwd && rhs_is_fwd && _i==rhs._i && _li==rhs._li &&
_lij==rhs._lij && _lj==rhs._lj && _j<rhs._j) {
return true;
}
return false;
}//end operator<
friend ostream& operator<< <>(ostream&, const five_tuple<V_T, E_T>&);
int _i;
int _j;
V_T _li;
V_T _lj;
E_T _lij;
};//end struct five_tuple
template<typename V_T, typename E_T>
ostream& operator<< (ostream& ostr, const five_tuple<V_T, E_T>& tuple) {
ostr<<tuple._i<<" "<<tuple._j<<" "<<tuple._li<<" "<<tuple._lij<<" "<<tuple._lj;
return ostr;
}
/**
* \struct less_than for edge sets, represented as a 5-tuple.
* Used to order a list of edges. This function looks only
* at the vertex labels and the edge label.
* This function is not used for ordering the edges in canonical
* order.
*/
template<typename V_T, typename E_T>
struct lt_five_tuple
{
/***
bool operator()(const five_tuple<V_T, E_T > t1, const five_tuple<V_T, E_T > t2) const {
// return ((t1._li < t2._li) || ((t1._li == t2._li) && (t1._lij < t2._lij)) ||
// ((t1._li == t2._li) && (t1._lij == t2._lij) && (t1._lj < t2._lj)));
// First come the back edges and then come the forward edges.
if(t1._li < t2._li) {
return true;
} else if((t1._li == t2._li) && (t1._lij < t2._lij)) {
if((t1._lj >= 0 && t2._lj >= 0) && (t1._lij < t2._lij)) ||
((t1._li == t2._li) && (t1._lij == t2._lij) && (t1._lj < t2._lj)));
return false;
}
***/
/**
* Returns true if t1 < t2
*/
bool operator()(const five_tuple<V_T, E_T > t1, const five_tuple<V_T, E_T > t2) const {
if(t1._li < t2._li) {
return true;
} else if(t1._li == t2._li) { // Source edge is the same.
if(t1._j < 0 && t2._j >= 0) // t1 is fwd, t2 is back.
return false;
if(t1._j >= 0 && t2._j < 0) // t1 is back, t2 is fwd.
return true;
if(t1._j >= 0 && t2._j >= 0) { // Both back edges.
if(t1._j > t2._j) // Back edges to lower numbered edges come first.
return true;
else
return false;
}
// Reach here only if both forward edges.
if(t1._lij < t2._lij) // edge label of t1 < t2 edge label.
return true;
else if(t1._lij > t2._lij)
return false;
// Both edge labels are same, then the last criterion
if(t1._lj < t2._lj)
return true;
}
return false;
}
};
/**
* \struct less_than for candidate edge sets, represented as a 5-tuple.
* Used to order a list of edges by the canonical ordering.
* The first one will be used to extend the current pattern.
*
* This code assumes that the first node in both the edges is
* the same.
*/
template<typename V_T, typename E_T>
struct lt_five_tuple_can_order
{
//
// Returns true if t1 < t2
//
bool operator()(const five_tuple<V_T, E_T> t1, const five_tuple<V_T, E_T> t2) const {
bool is_t1_back = true, is_t2_back = true;
if(t1._j == -1) // Is t1 back_edge?
is_t1_back = false;
if(t2._j == -1) // Is t2 back_edge?
is_t2_back = false;
if((is_t1_back && is_t2_back) || (!is_t1_back && !is_t2_back)) { // Both back edges or both fwd.
if(t1._j < t2._j)
return true;
else
return false;
} else if(is_t1_back && !is_t2_back) { // t1 back, t2 forward.
return true;
} else if(!is_t1_back && is_t2_back) { // t2 back, t1 forward.
return false;
}
}
};
template <typename V_T, typename E_T>
class canonical_code;
template<typename V_T, typename E_T>
ostream& operator<< (ostream&, const canonical_code<V_T, E_T>&);
/**
* \brief Graph canonical Code class by partial specialization of
* generic canonical_code class.
*
* pattern_prop is set to undirected (graph property)
*/
template<typename V_T, typename E_T>
class canonical_code
{
public:
typedef int STORAGE_TYPE;
typedef five_tuple<V_T, E_T> FIVE_TUPLE;
typedef FIVE_TUPLE INIT_TYPE;
typedef eqint COMPARISON_FUNC;
typedef vector<FIVE_TUPLE> TUPLES;
typedef typename TUPLES::const_iterator CONST_IT;
typedef typename TUPLES::iterator IT;
typedef canonical_code<V_T, E_T> CAN_CODE; // this class type
typedef unordered_map<int, int> VID_HMAP; // hash an int-->int
typedef typename VID_HMAP::const_iterator VM_CONST_IT;
typedef vector<int> RMP_T;
canonical_code() : _can_code(id_generator++) {} // defunct default constructor
/** Parameterized constructor that inserts ft as first tuple into
DFS code, it also takes two vertex-id and store them in hashmap */
canonical_code(const FIVE_TUPLE& ft, const int&gi, const int& gj) {
append(ft, gi, gj);
}
//dfs code is just a vector of five_tuple, this begin() returns the five-tuple of 1st edge
IT begin() { return _dfs_code.begin();}
CONST_IT begin() const { return _dfs_code.begin();}
IT end() { return _dfs_code.end();}
CONST_IT end() const { return _dfs_code.end();}
bool is_present(const FIVE_TUPLE& ft) {
FIVE_TUPLE other(ft._j, ft._i, ft._lj, ft._lij, ft._li);
if((_dfs_code.find(ft) == _dfs_code.end()) && (_dfs_code.find(other) == _dfs_code.end()))
return false;
else
return true;
}
int size() const { return _dfs_code.size();} // how many edges are there in the code?
void clear() {
_dfs_code.clear();
_cid_to_gid.clear();
_gid_to_cid.clear();
_rmp.clear();
}
const FIVE_TUPLE& operator[](const int& index) const { return _dfs_code[index];}
// initializing rmp, rmp is a vector of integer, it always inilializes as (0,1)
// since, in our graph dataset, any graph's vertex id are integer and id starts
// with 0.
void init_rmp() {
if(!_rmp.empty())
_rmp.clear();
_rmp.push_back(0);
_rmp.push_back(1);
}
// when a forwarde edge is added to a pattern, its rightmost path may changes;
// this routine makes the corresponding updates. It is used when we generate
// a new candidate by adding an edge to a pattern.
// The parameter passed is the five-tuple corresponding to the new edge
// THIS ROUTINE IS CALLED IN update_rmpath() in graph_iso_check.h
void update_rmp(const FIVE_TUPLE& tuple) {
// if the right most path is empty, it is always
// a forward edge and added by putting the two
// id's of the graph
if(_rmp.empty()) {
_rmp.push_back(tuple._i);
_rmp.push_back(tuple._j);
return;
}
// no changes to rmp if it's a back-edge
if(tuple._i>tuple._j)
return;
// Here is an example how rmp can change:
// consider a graph's rmp is like, 1---4-----3-----2
// at this point, an edge (4---5) is added with the vertex 4
// like below:
// ---------5
// |
// 1---4----3------2
// new rightmost path is: 1---4-----5
typename RMP_T::iterator rmp_it=_rmp.end()-1;
while(rmp_it>=_rmp.begin()) {
if(*rmp_it==tuple._i) // finding whith vertex the forward edge connect's to
break;
rmp_it=_rmp.erase(rmp_it); // deleting the vertices that is not part of rmp
rmp_it--; // checking the previous vertex
}
_rmp.push_back(tuple._j); // adding the new edge's other vertex in the rmp
}//end update_rmp()
template<class PAT>
void init(const INIT_TYPE& tuple, PAT* pattern) {
clear();
_dfs_code.push_back(tuple);
ostringstream t_ss;
t_ss << tuple;
string t_str = t_ss.str();
unordered_map<string, int>::iterator itr = level_one_hash.find(t_str);
if(itr != level_one_hash.end()) {
_can_code = itr->second;
//delete [] p;
} else {
//level_one_hash.insert(make_pair(p, _can_code));
level_one_hash.insert(make_pair(t_str, _can_code));
}
//pattern->update_rmpath(0);
//pattern->update_rmpath(1);
}
void push_back(const FIVE_TUPLE& tuple) {
_dfs_code.push_back(tuple);
}
// append a dfs code, just by inserting this tuple at the end
void append(const FIVE_TUPLE& tuple) {
push_back(tuple);
}
void append(const FIVE_TUPLE& tuple, const int& gi, const int& gj) {
push_back(tuple);
_cid_to_gid.insert(make_pair(tuple._i, gi));
_cid_to_gid.insert(make_pair(tuple._j, gj));
_gid_to_cid.insert(make_pair(gi, tuple._i));
_gid_to_cid.insert(make_pair(gj, tuple._j));
}
void update_code() {
_can_code = id_generator++;
}
STORAGE_TYPE getCode() const {
return _can_code;
}
// canonical dfs code test, test for every edges lexicographically
bool operator< (const CAN_CODE& rhs) const {
unsigned int i=0, j=0;
while(i<_dfs_code.size() && j<rhs._dfs_code.size()) {
if(_dfs_code[i] < rhs._dfs_code[j]) // comparing individual edge
return true;
i++;
j++;
}
return false;
// both codes are equal till common length
// return _dfs_code.size()>=rhs._dfs_code.size();
}
int cid(const int& gi) const {
VM_CONST_IT it=_gid_to_cid.find(gi);
if(it==_gid_to_cid.end()) {
return -1;
}
return it->second;
}
int gid(const int& ci) const {
VM_CONST_IT it=_cid_to_gid.find(ci);
if(it==_cid_to_gid.end()) {
return -1;
}
return it->second;
}
RMP_T& rmost_path() { return _rmp;}
void append_rmp(const int& id) {
_rmp.push_back(id);
}
typedef pair<V_T, pair<E_T, V_T> > EDGE_T;
struct ltedge {
bool operator()(const EDGE_T& e1, const EDGE_T& e2) const {
return ((e1.first < e2.first) ||
(e1.first == e2.first && e1.second.first < e2.second.first) ||
(e1.first == e2.first && e1.second.first == e2.second.first &&
e1.second.second < e2.second.second));
}
};
/**
* Converts the canonical code to a string.
*/
std::string to_string() const {
if (_dfs_code.size() == 0) return "null";
ostringstream t_ss;
for(unsigned int i=0; i < _dfs_code.size(); i++) {
if(i == 0)
t_ss << _dfs_code[i];
else
t_ss << ":" << _dfs_code[i];
}
string t_str = t_ss.str();
return t_str;
}
static double graph_distance(const CAN_CODE& c1, const CAN_CODE& c2) {
multiset<EDGE_T, ltedge> set1, set2;
vector<EDGE_T> result;
CONST_IT cit;
EDGE_T an_edge;
for (cit = c1.begin(); cit < c1.end(); cit++){
if (cit->_li < cit->_lj)
an_edge = make_pair(cit->_li, make_pair(cit->_lij, cit->_lj));
else
an_edge = make_pair(cit->_lj, make_pair(cit->_lij, cit->_li));
set1.insert(an_edge);
}
for (cit = c2.begin(); cit < c2.end(); cit++){
if (cit->_li < cit->_lj)
an_edge = make_pair(cit->_li, make_pair(cit->_lij, cit->_lj));
else
an_edge = make_pair(cit->_lj, make_pair(cit->_lij, cit->_li));
set2.insert(an_edge);
}
set_intersection(set1.begin(), set1.end(), set2.begin(), set2.end(), back_inserter(result));
return 1 - (double)result.size()/max(set1.size(), set2.size());
}
/*
//// Destructor /////////////
~canonical_code() {
// cout << "Destructor called\n";
// freeing all dynamically allocated memory here
HASHNS::hash_map<const char*, int, HASHNS::hash<const char*>, eqstr>::iterator itr = level_one_hash.begin();
cout << "Size of map:" << level_one_hash.size() << endl;
for (; itr != level_one_hash.end(); itr++) {
const char* t = itr->first;
cout << "freeing "<< strlen(t) << " bytes\n";
if (t && strlen(t) > 0)
delete[] t;
t = 0;
}
cout << "done freeing\n";
}
*/
friend ostream& operator<< <>(ostream&, const canonical_code<V_T, E_T>&);
private:
STORAGE_TYPE _can_code;
TUPLES _dfs_code;
// the following two maps are very important. They maps vertex_id_in_code <---> vertex_id_in_graph
// while we are making minimal code, we reassign vertex id according to minimal code, say in a graph
// if we have edges like, D----C----D----B---A, there id's are like 0---1---2----3----4.
// in min_can_code, A should have id-0, so in _cid_to_gid{0} = 4, _gid_to_cid{4} = 0
VID_HMAP _cid_to_gid; // code -> graph cand
VID_HMAP _gid_to_cid; // cand graph -> code
RMP_T _rmp;
static int id_generator;
static unordered_map<string, int> level_one_hash;
};//end class canonical_code for graph
template<typename V_T, typename E_T>
ostream& operator<< (ostream& ostr, const canonical_code<V_T, E_T>& cc) {
typename canonical_code<V_T, E_T>::TUPLES::const_iterator it;
for(it=cc._dfs_code.begin(); it!=cc._dfs_code.end(); it++)
ostr<<*it<<endl;
return ostr;
}
template<typename V, typename E>
int canonical_code<V, E>::id_generator = 1;
template<typename v, typename e>
unordered_map<string, int> canonical_code<v, e>::level_one_hash;
#endif