-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathETable.m
831 lines (749 loc) · 34.5 KB
/
ETable.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
classdef ETable < dynamicprops & matlab.mixin.SetGet
properties
data; % Core Data Table
shortNames; % Short Names for Each Valid Column
unitsList; % Cosmetically Styled Units for Each Short Name (using latex)
end
methods
% Instantiates table from the given spreadsheet or table (make sure
% to upgrade xls to xlsx) with the given short names for columns.
% Note, 'source' can also be another ETable to copy (if only one
% argument given) or either a table source or the URI to an excel
% file.
function obj = ETable(source, shortNames)
% Creates a New ETable with the same contents as the given ETable
% if only one argument is given and that argument is the
% ETable
if nargin < 2
other = source;
obj.data = other.data;
obj.shortNames = other.shortNames;
obj.unitsList = other.unitsList;
% Copy all custom properties over
for name = other.shortNames
obj.addprop(char(name));
obj.set(char(name), other.get(char(name)));
end
else
obj.shortNames = shortNames;
if istable(source)
obj.data = source;
else
obj.data = readtable(source, 'ReadVariableNames',false);
% Prune Columns that are Empty or Contain NaN from Table:
w = width(obj.data);
c = 1;
while c<=w
if (...
~iscell(obj.data{:,c}) && ~prod(~isnan(obj.data{:,c})) || ... % contains NaN
isequal(obj.data{2,c}, {''}) && isempty(strtrim(strjoin(cellstr(obj.data{2:end,c})))) ... %is empty
)
obj.data(:,c) = [];
w = w - 1; % Readjust width
else
c = c+1;
end
end
% Scoop up Unaltered Full Names into Variable Descriptions, for
% plotting labels:
obj.data.Properties.VariableDescriptions = obj.data{1,:};
% Dump them into Variable Names as well, for command-line #head
% display:
obj.data.Properties.VariableNames = matlab.lang.makeValidName(obj.data{1,:});
% Remove Header Row from Data:
obj.data(1,:) = [];
end
% Prune Any Rows which are All Empty (eg. due to equations in
% excel which returned '').
r = 1;
h = height(obj.data);
while r<=h
row = strtrim(join(obj.data{r,:}));
if isequal(row, {''})
obj.data(r,:) = [];
h = h-1;
else
r = r+1;
end
end
for c = 1:width(obj.data)
% Convert Strings to Numbers i/a:
nums = str2double(obj.data{:,c});
numericData = prod(~isnan(nums)); % nums is NaN free
if numericData
obj.data{:,c} = num2cell(nums);
end
% Create Object Properties Based on Short Name:
try
obj.addprop(char(shortNames(c)));
if numericData
tabData = cell2mat(obj.data{:,c});
else
tabData = string(obj.data{:,c});
end
obj.set(char(shortNames(c)), tabData);
catch e
warning('Possibly Wrong Number of Short Names Supplied');
end
end
end
obj.unitsList = repmat("", 1,width(obj.data));
end % ctor
% Returns a list that is true for each row of the data table (for
% selecting all rows
function t = true(obj)
t = true(height(obj.data), 1);
end
% Alias for #true
function ar = allrows(obj)
ar = obj.true();
end
% Helper Function which Returns the Full Variable Name, as a Valid
% Variable Name, Associated with the Given shortName:
function vfn = validFullName(obj, shortName)
vfn = obj.data.Properties.VariableNames{obj.shortNames == shortName};
end
% Helper Function which Returns the Cosmetic (user-facing) Full
% Variable Name, Associated with the Given shortName:
function cfn = cosmeticFullName(obj, shortName)
cfn = obj.data.Properties.VariableDescriptions{obj.shortNames == shortName};
end
% Adds a Column with the Given Name, ShortName, and Values:
function add(obj, n, sn, vs)
% Add Parameter:
obj.addprop(sn);
obj.set(char(sn), vs);
if numel(obj.shortNames)
obj.shortNames(end+1) = sn;
else
obj.shortNames = string(sn); % Must be first entry being added
end
% Add to Core Data Table:
if size(vs,1) == 1
vs = vs'; % Ensure data is column-vector
end
obj.data{:, end+1} = num2cell(vs); % use full name for table headers
obj.rename(sn, n); % Set all names
end
% Edits the Given Column with the Given Short Name by replacing its
% values with the given new values:
function edit(obj, sn, newVals)
% Update Parameter:
obj.set(char(sn), newVals);
% Update Core Data Table:
obj.data{:, obj.validFullName(sn)} = num2cell(newVals);
end
% Set the value of the first given variable to its average across
% alls rows where the second given variable has one of the given
% values for each of the given values.
% Rows where varB is not (within 5% of) any of the given values
% remain unchanged.
%{
ex.: table.bin('A', 'B', 10,20)
A | B A | B
1 | 10 2 | 10
2 | 10 2 | 10
3 | 10 2 | 10
3 | 13 -> 3 | 13
4 | 20 5 | 20
5 | 20 5 | 20
6 | 20 5 | 20
%}
function bin(obj, varA, varB, varargin)
As = obj.get(char(varA));
Bs = obj.get(char(varB));
binned = As;
for i=1:numel(varargin)
cond = ETable.is(Bs,varargin{i});
binned = binned.*~cond + mean(As(cond)).*cond;
end
obj.edit(varA,binned);
end
% Edits the Full Name Associated with the Given Short Name:
function rename(obj, sn, newFullName)
% Set Name:
idx = obj.shortNames == sn;
obj.data.Properties.VariableNames{idx} = matlab.lang.makeValidName(newFullName);
obj.data.Properties.VariableDescriptions{idx} = newFullName;
% Try to Extract Units from Name:
units = regexp(newFullName, '(?<=\[).*(?=\])', 'match');
if ~isempty(units)
obj.unitsList(idx) = units(1);
elseif numel(obj.unitsList) < find(idx,1,'last') || ismissing(obj.unitsList(idx))
obj.unitsList(idx) = ""; % Add blank units if none exist yet
end
end
% Sets the Cosmetic Units Associated with the Given ShortName
function setUnits(obj, sn, us)
obj.unitsList(obj.shortNames == char(sn)) = us;
end
% Returns the Units Associated with the Given Short Name
function u = units(obj, sn)
u = obj.unitsList(obj.shortNames == char(sn));
end
% Prints the Top of the Table in the Command Line:
function head(obj)
disp(head(obj.data,5));
end
% Returns a copy of this object as a new ETable
function copy = copy(this)
copy = ETable(this);
end
% Returns subsection of the current ETable as a Table containing
% all the columns between the columns with short names: colA, colB.
% If only colA is needed, just use table.get(col)
function sub = cols(obj, colA, colB)
idxA = find(obj.shortNames == colA, 1);
idxB = find(obj.shortNames == colB, 1);
sub = obj.data{:, idxA:idxB};
end
% Returns subsection of the current ETable as a Matrix containing
% the columns with the given indicies in the desired order
function sub = selectColumns(obj, varargin)
sz = size(obj.get(char(varargin{1})));
sz(2) = length(varargin);
sub = zeros(sz);
for i = 1:numel(varargin)
sub(:,i)= obj.get(char(varargin{i}));
end
end
% Returns a Table Containing the Columns with the Given Short
% Names.
function tab = subColTable(obj, varargin)
dat = obj.get(varargin);
tab = array2table(cell2mat(dat));
tab.Properties.VariableNames = varargin;
desc = varargin;
for i = 1:numel(varargin)
desc{i} = obj.cosmeticFullName(varargin{i});
end
tab.Properties.VariableDescriptions = desc;
end
% Exports a Table Containing the Columns with the Given Short
% Names to an Excel file with the Given Filename.
function subColToExcel(obj, filename, varargin)
tab = obj.subColTable(varargin{:});
writetable(tab, filename);
end
% Returns a ETable which is a subtable of the given table where
% each row is the average of all values that meet the conditions
% given by each element of varargin, where varargin is a list of
% conditional vectors obtained by performing, say,
% ETable.is(table.parameterA, parameterValue) & table.parameterB>5
function ST = subtable(obj, varargin)
ST = obj.copy();
% Summarize Data for Each Range:
subdata = zeros(length(varargin), length(obj.shortNames));
for c = 1:width(obj.data)
col = obj.get(char(obj.shortNames(c))); % Fetch Column Data
for r = 1:length(varargin)
subdata(r,c) = mean(col([varargin{r}]));
ST.set(char(obj.shortNames(c)), subdata(r,c));
end
end
sub = array2table(subdata);
sub.Properties.VariableNames = obj.data.Properties.VariableNames;
sub.Properties.VariableDescriptions = obj.data.Properties.VariableDescriptions;
ST.data = sub;
end
% Adds a Column to This Table where Each Entry is Interpolated
% As a Value from colX -> colY in the src Table where Column X in
% This Table is used as the Reference Value.
% N.B.: All columns given as shortNames.
% ex. T1.interp('Pressure in Valve B', 'Pb', PvsT_Table, 'T', 'P', 'Tb');
function interp(obj, n, sn, src, colX, colY, x)
% TODO: add 'extrap' to interp1 or strict boundary cutoffs
% (however that would be implemented for arbitrary datasets
% which might not be monotonic... or is it ideal for this to
% spit out NaN for OOB issues?
obj.add(n,sn, interp1(src.get(colX), src.get(colY), obj.get(x), 'linear'));
end
% Same as interp but Steals name and short name from colY of source
% table.
function interpS(obj, src, colX, colY, x)
obj.interp(src.cosmeticFullName(colY),colY, colX, colY, x);
end
% Same as #interp but in quasi-2D (ie. stacked tables as in the
% Thermodynamics textbook).
function interpQ2(obj, n, sn, src, colX,colY,colV, x,y)
xs = obj.get(x);
ys = obj.get(y);
vs = zeros(size(ys));
for i = 1:numel(ys)
Xs = src.get(colX);
Ys = src.get(colY);
Vs = src.get(colV);
y_low = max(Ys(Ys < ys(i)));
low = Ys == y_low;
v_low = interp1(Xs(low), Vs(low), xs(i), 'linear');
y_high = min(Ys(Ys >= ys(i)));
high = Ys == y_high;
v_high = interp1(Xs(high), Vs(high), xs(i), 'linear');
vs(i) = (ys(i) - y_low)*(v_high - v_low)/(y_high - y_low) + v_low;
end
obj.add(n,sn, vs);
end
% Performs Logarithmic Decrement for a Signal Experiencing
% Free-Vibration.
% Returns the Damping Ratio, z, for the Data in the Column with the
% Given Short Name, colY, as a Function of the Column with the
% Given Short Name, colX, over the given range. Range must only
% include one section of free-oscillation and nothing else.
% Returns damping ratio, z, the natural frequency wn, equilibrium
% position (steady-state value), and the location of all the peaks
% identified as a struct with parameters X and Y.
% Can be tuned to reject more peaks by adjusting the quantile
% fraction chosen in prominences selection (default is 0.5).
function [z, wn, peaks, equilibrium] = logdec(obj, colX,colY, range, tuning)
xs = obj.get(char(colX));
ys = obj.get(char(colY));
if nargin > 3
xs = xs(range);
ys = ys(range);
end
if nargin < 5
tuning = 0.5;
end
peaks = struct('X',[],'Y',[]);
% Perform a basic first pass to assess the data:
peaks.Y = findpeaks(ys, xs); % Find all local maxima
if(numel(peaks.Y) < 3)
error('Not enough peaks to perform logarithmic decrement.');
end
% Only select peaks which have gone down and back up again by
% a selected prominence value (to avoid detecting noise at the
% peaks as multiple separate peaks).
equilibrium = ys(end); % Assumed Steady-state value.
peaks.Y = peaks.Y(peaks.Y > equilibrium); % Filter out noise peaks near minima
prominence = peaks.Y - equilibrium; % Half-Prominence of all peaks
% Take a prominence (mean of the half-prominences), but make
% sure there end up being at least 4 peaks left:
prominence = min( mean([quantile(prominence,tuning), mean(prominence)]), prominence(4) );
% Reassess Peaks:
[peaks.Y, peaks.X] = findpeaks(ys, xs, 'MinPeakProminence',prominence);
% Filter out really obvious noise peaks near minima (there
% really shouldn't be any here at this point but just in case):
valid = peaks.Y > equilibrium;
peaks.Y = peaks.Y(valid);
peaks.X = peaks.X(valid);
Td = mean(diff(peaks.X)); % Underestimate on Average Damped Period
[peaks.Y, peaks.X] = findpeaks(ys, xs, 'MinPeakProminence',prominence, 'MinPeakDistance',0.6*Td); % just over half-period
% Filter out really obvious noise peaks near minima (there
% really shouldn't be any here at this point but just in case):
valid = peaks.Y > equilibrium;
peaks.Y = peaks.Y(valid);
peaks.X = peaks.X(valid);
% Do one final pass filtering out any multiple recognitions of
% a peak when the signal is still at high amplitude (these can
% make it through the above filters):
% Perform Logarithmic Decrement:
% Average across all possible spans with at least 3 peaks to
% try to eliminate effects of any errant peaks:
if(numel(peaks.Y) < 3)
warning('Not enough peaks to perform logarithmic decrement well.');
end
if(numel(peaks.Y) < 2)
error('Not enough peaks to perform logarithmic decrement.');
else
zs = [];
peaksRel = peaks.Y - equilibrium;
for i = 2:numel(peaks.Y)
d = log(peaksRel(1)/peaksRel(i)) / (i-1);
zs(end+1) = d / sqrt(4*pi^2 + d^2);
end
% Choose the z from zs which creates an envelope that
% best fits the peaks (minimum least squared error):
lses = []; % Least Squared Error of Each z value in zs
for i = 1:numel(zs)
lses(i) = sum((peaks.Y - envelope(peaks.X, zs(i))).^2);
end
[~, minIdx] = min(lses);
z = zs(minIdx);
% Collect Associated Values:
Td = mean(diff(peaks.X)); % Average Damped Period
wd = 2*pi/Td; % Damped Natural Frequency
wn = wd / sqrt(1-z^2); % Natural Frequency
end
% Helper function that returns a function for plotting an
% envelope for a given z.
function e = envelope(t,z)
ttd = mean(diff(peaks.X)); % Average Damped Period
wwd = 2*pi/ttd; % Damped Natural Frequency
wwn = wwd / sqrt(1-z^2); % Natural Frequency
e = (equilibrium + (peaks.Y(1)-equilibrium)*exp(-z.*wwn.*(t-peaks.X(1))))./sqrt(1-z^2);
end
end
% Function Summary, displays and returns a summary table of the
% mean values of all variables in each of the given ranges.
function STd = summary(obj, varargin)
ST = obj.subtable(varargin{:});
STd = ST.data;
% TODO: Transfer over each dynamicprop (.get, .set)
disp('Summary Table:');
disp(STd);
end
% Produces a Stylized Plot of the Two Variables with the Given
% Short Names Subject to the Given Range. Returns the plot handle.
% Shifts all values along the x-axis by shiftX and along the y-axis
% by shiftY.
function ph = plot(obj, nameX, nameY, range, format, shiftX, shiftY)
if nargin < 5
format = 'o-';
end
if nargin < 6
shiftX = 0;
end
if nargin < 7
shiftY = 0;
end
% Obtain Data:
xs = obj.get(char(nameX)) + shiftX;
ys = obj.get(char(nameY)) + shiftY;
% Determine Range:
if nargin < 4
range = true(size(xs));
end
% Plot Data:
hold on
ph = plot(xs(range), ys(range), format);
hold off
obj.label(nameX, nameY);
end
% Produces a Stylized Plot of the All the Variables with the Given
% Short Names against the First Variable.
% Returns the plot handles.
function phs = multiplot(obj, style, nameX, varargin)
phs = [];
leg = {}; % legend entries
xs = obj.get(char(nameX));
hold on
for i = 1:(nargin-3)
nameY = varargin{i};
phs(end+1) = obj.plot(nameX, nameY, obj.true(), style); % Plot as lines (requires specifying range for all points)
fullName = obj.cosmeticFullName(nameY); % Fetch full names
fullName(regexp(fullName,'[\n\r]')) = []; % Remove linebreaks
leg{i} = fullName;
end
hold off
% Label Axes:
fullNameX = obj.cosmeticFullName(nameX); % Fetch full names
fullNameX(regexp(fullNameX,'[\n\r]')) = []; % Remove linebreaks
xlabel(fullNameX, 'Interpreter', 'latex');
ylabel('Output', 'Interpreter', 'latex');
% Add Legend:
legend(leg, 'Interpreter', 'latex');
end
% Produces a Stylized Plot of the Two Variables with the Given
% Short Names Subject to the Given Range with Vertical Error Bars
% from the Variable with the Short Name nameE. Errorbars will only
% show up every n datapoints. Returns the plot handle.
function eph = errorplot(obj, nameX, nameY, nameE, n, range, format)
if nargin < 7
format = 'o-';
end
% Obtain Data:
xs = obj.get(char(nameX));
ys = obj.get(char(nameY));
es = obj.get(char(nameE));
ebars = NaN(size(es));
ebars(1:n:length(es)) = es(1:n:length(es));
% Determine Range:
if nargin < 6
range = true(size(xs));
end
% Plot Data:
hold on
eph = errorbar(xs(range), ys(range), ebars(range), format);
hold off
obj.label(nameX, nameY);
end
% Creates a Plot with Error Bars for the Given X and Y Data Subject
% to the Given Conditionals Range. Only plots points which are the
% average X and Y data for each value of varargin for the given
% variable, var.
% Ex.
% errorAvgAtplot('X','Y','dqc', ETable.is(V,9), 0.1, 'u', 1,2,3);
% Plots a one point with errorbars for each value of u within 0.1 of
% (1,2,3) on a graph of Y vs X where V is 9.
function eph = errorAvgAtplot(obj, nameX, nameY, nameE, range, window, var, varargin)
% Obtain Data:
xs = obj.get(char(nameX));
ys = obj.get(char(nameY));
es = obj.get(char(nameE));
xs = xs(range);
ys = ys(range);
es = es(range);
% Compute Points:
vals = [varargin{:}];
xps = [];%nan(size(vals));
yps = [];%nan(size(vals));
eyps = [];%nan(size(vals));
exps = [];%nan(size(vals));
for i=1:length(vals)
rawVals = obj.get(char(var));
cond = ETable.inrange(rawVals(range), vals(i)-window, vals(i)+window);
if sum(cond)
xps(end+1) = mean(xs(cond));
yps(end+1) = mean(ys(cond));
eyps(end+1) = mean(es(cond));
exps(end+1) = 2*std(xs(cond));
end
end
% Plot Data:
hold on
eph = errorbar(xps, yps, eyps/2, eyps/2, exps/2, exps/2, 'o-');
hold off
eph.MarkerSize = eph.MarkerSize / 2;
obj.label(nameX, nameY);
end
% Helper Function which labels a plot, given the short names of the
% x and y axes
function label(obj, nameX, nameY)
fullNameX = obj.cosmeticFullName(nameX); % Fetch full names
fullNameY = obj.cosmeticFullName(nameY);
fullNameX(regexp(fullNameX,'[\n\r]')) = []; % Remove linebreaks
fullNameY(regexp(fullNameY,'[\n\r]')) = [];
xlabel(fullNameX, 'Interpreter', 'latex');
ylabel(fullNameY, 'Interpreter', 'latex');
end
% Convenience function that marks the last data point
% where the variables in the varargin list are within 5% of their
% associated values in the current plot of nameY vs nameX. Each
% datapoint is labeled with the conditionals then the coordinates
% of the point. The arrow to each datapoint has length l, angle a
% in radians, and horizontal alignment given by horizAlign
% Lengths are referenced in terms of x-axis units.
% Ex:
% ETable.mark('t','T', 35,pi/2, 'V',9, 'Ua',1)
% This will mark the last datapoint where V is 9, and Ua is 1 with
% something like: {'9V, 1m/s', '10min, 300K'} with an arrow that is
% 35minutes long (if units of 't' are minutes) at an angle of pi/2.
function m = mark(obj, nameX,nameY, l,a, horizAlign, varargin)
if ~mod(length(varargin),2) % ensure length of varargin is even
cond = true(size(obj.data{:,1})); % select all datapoints
label = {'', ''};
if length(varargin) > 1
vars = string(varargin(1:2:end));
args = [varargin{2:2:end}];
for i = 1:length(vars)
cond = cond & ETable.is(obj.get(char(vars(i))), args(i));
if i>1
label{1} = strcat(label{1}, {', '});
end
label{1} = strcat(label{1}, string(args(i)), obj.units(vars(i)));
end
end
xs = obj.get(char(nameX)); xs = xs(cond);
ys = obj.get(char(nameY)); ys = ys(cond);
% Prune Outliers
out = isoutlier(xs);
xs(out) = []; ys(out) = [];
if ~isempty(xs)
x = xs(end); y = ys(end);
label{2} = strcat(string(floor(x)), obj.units(nameX), {', '}, string(floor(y)), obj.units(nameY));
m = ETable.arrow(x,y, l,a, label, 'HorizontalAlignment', horizAlign);
end
else
error('#ETable::mark requires an even number of pairs of variables and values');
end
end
% Convenience function that puts an annotation (arrow pointing to)
% the final point that meets a given conditionals list in the
% current plot of nameY vs nameX.
% l is the length of the arrow, a is angle, and t is the text,
% along with a vararginlist of parameters.
% Lengths are referenced in terms of x-axis units.
function a = annotate(obj, nameX,nameY, cond, l,a, t, varargin)
xs = obj.get(char(nameX)); xs = xs(cond);
ys = obj.get(char(nameY)); ys = ys(cond);
if ~isempty(xs)
x = xs(end); y = ys(end);
a = ETable.arrow(x,y, l,a, t,varargin);
end
end
function tab2 = binCompressTable(tab, namesX, nameB, bins, window, range)
tab2 = ETable(array2table([]), []);
for nx = namesX
if nx == "X"
end
tab.add(char("Std. of " + tab.cosmeticFullName(char(nx))), char("s"+nx), zeros(size(tab.get(char(nx)))));
[~,~,X,S] = aggressiveBin(tab, nx, nameB, char("s"+nx), bins, window, range);
tab2.add(tab.cosmeticFullName(char(nx)), char(nx), X);
tab2.add(char("Std. of " + tab.cosmeticFullName(char(nx))), char("s"+nx), S);
tab2.add(char("Uncertainty in " + tab.cosmeticFullName(char(nx))), char("d"+nx), 2.*S);
end
end
function [X,S,x_sm,s_sm] = aggressiveBin(tab, nameX, nameB, nameSTD, bins, window, range)
if nargin < 5
window = 0.15;
end
x_sm = nan(numel(bins),1); % Small x range (on entry per bin)
s_sm = nan(numel(bins),1);
xdat = tab.get(char(nameX));
X = xdat;
xinrange = xdat(range);
bdat = tab.get(char(nameB));
binrange = bdat(range);
S = tab.get(nameSTD);
for i = 1:numel(bins)
b = bins(i);
brange = ETable.inrange(bdat, b-window, b+window) .* range;
s = std(xinrange(ETable.inrange(binrange, b-window, b+window)));
if isnan(s)
s = 0;
end
S = S.*~brange + s .* brange;
m = mean(xinrange(ETable.inrange(binrange, b-window, b+window)));
if isnan(m)
m = 0;
end
X = X.*~brange + m .* brange;
x_sm(i) = m;
s_sm(i) = s;
end
end
function [X,S] = ab(T,x,b,s,bs,w,r)
[X,S] = aggressiveBin(T,x,b,s,bs,w,r);
end
% Exports All the Columns Given in 'cols' (by Shortname) to an
% Excel File with the Given 'filename'. Number of sigfigs for
% numbers can be given with sigfigs (4 by default).
% If no columns are given, all columns will be exported.
function export2Excel(obj, filename, cols, sigfigs)
if nargin < 3
cols = obj.shortNames;
end
if nargin < 4
sigfigs = 4;
end
table = array2table(string(zeros(height(obj.data), length(cols))));
for i = 1:numel(cols)
table.Properties.VariableNames{i} = char(cols(i));
table{:,i} = string(num2str(obj.get(char(cols(i))), sigfigs));
end
writetable(table, char(string(filename)+".xlsx"));
end
end
methods(Static)
% Loads a Table from a Single-Line Column-wise Text File where
% New Entries are Delimited by Spaces with 'n_cols' entries per row.
% As an example, this can be useful for copying a table from a pdf.
% Note: All entries must be numbers; leave column headers out of
% file.
% Column Headers Must be Given in String Array 'headers'.
% Short Names (variable ids) must be given in shortNames
function obj = loadFromLineFile(file, n_cols, headers, shortNames)
fID = fopen(file, 'r');
mat = fscanf(fID, '%f', [n_cols Inf])';
tab = cell2table(cellfun(@num2str, num2cell(mat), 'un',0));
% Scoop up Unaltered Full Names into Variable Descriptions, for
% plotting labels:
tab.Properties.VariableDescriptions = cellstr(headers);
tab.Properties.VariableNames = matlab.lang.makeValidName(cellstr(headers));
obj = ETable(tab, shortNames);
end
% Convenience function that adds the given text as a caption to the
% figure.
function c = caption(t)
dim = [0.1, 0.07, 0, 0];
c = annotation('textbox', dim, 'String', t, 'FitBoxToText', 'on', 'LineStyle', 'none', 'Interpreter', 'latex');
end
% Draws a grey verical dashed line at the given X-axis value on the
% current plot, with a label of the given text at the bottom (or
% top).
% side: 'left','right','center','auto'
% valign: 'top','bottom'
function vline(x, txt, side, valign, color)
if nargin < 3
side = 'auto';
end
if nargin < 4
valign = 'bottom';
end
if nargin < 5
color = [0.5 0.4 0.4]; % grey
end
if strcmp(side, 'auto')
if x > mean(xlim)
side = 'right';
else
side = 'left';
end
end
hold on
plot([x x], ylim, ':', 'Color', color);
size = ylim;
if strcmp(valign, 'bottom')
fact = 0.05;
else
fact = 0.95;
end
text(x, fact*diff(size) + size(1), char(txt), 'Color', color, 'HorizontalAlignment', side, 'Interpreter', 'latex');
hold off
end
% Draws a grey horizontal dashed line at the given Y-axis value on
% the current plot, with a label of the given text at the left.
% pos: 'left','center','right'
% valign: 'top','middle','bottom','cap','baseline'
function hline(y, txt, pos, valign, color)
if nargin < 3
hfact = 1; % Horizontal Positioning Factor
else
hfact = (find(pos==["left" "center" "right"],1) - 1) / 2;
if isempty(hfact)
hfact = 1;
end
end
if nargin < 4
if y > mean(ylim)
valign = 'top';
else
valign = 'bottom';
end
end
if nargin < 5
color = [0.5 0.4 0.4]; % grey
end
hold on
plot(xlim, [y y], ':', 'Color', color);
size = xlim;
text(hfact*diff(size) + size(1), y, char(txt), 'Color', color, 'HorizontalAlignment', pos, 'VerticalAlignment', valign, 'Interpreter', 'latex');
hold off
end
% Convenience function that draws an arrow to point x,y with length
% l, angle a, and optional text, t along with a list of parameters.
% Lengths are referenced in terms of x-axis units.
function a = arrow(x,y, l,a, t, varargin)
p = [x,y];
axs = gca; % Get current axes
sx = diff(axs.XLim); % Get size of each axis
sy = diff(axs.YLim);
o = p - l * [cos(a), sin(a)*sy/sx];
d = p-o;
a = quiver(o(1),o(2), d(1),d(2), 0, 'MaxHeadSize', 0.05*sx/norm(l * [cos(a), sin(a)*sy/sx]), 'HandleVisibility','off'); % don't show in legend
if nargin > 4
args = [varargin, {'Interpreter','latex'}];
text(o(1),o(2),t, args{:});
end
end
% Convenience function that returns whether the given value is
% within the given fractional range of the given target:
function w = within(val, range, target)
w = val < (target + range.*target) & val > (target - range.*target);
end
% Convenience function that returns whether the given value is
% within 5% of the given value:
function i = is(val, target)
if target ~= 0
i = ETable.within(val, 0.12, target);
else
i = ETable.inrange(val, -0.1, 0.1);
end
end
% Convenience Function that returns whether the given value is
% within the given range:
function w = inrange(val, lb,ub)
w = val <= ub & val >= lb;
end
end
end