Skip to content

Lecture 6 问题: 将 e_i 转换成二进制表示 #62

Discussion options

You must be logged in to vote

1. $e_i = \sum_{l=0}^{\lambda-1}e_{i,l}2^l$

这一步可以理解成是将$e_i$转化为2进制表示,其中$e_{i,l}$是第$l$位(从低位往高位数)的比特值;

$11=1 * 2^0 + 1 * 2^1 + 0 * 2^2 + 1 * 2^3$

2. $e_i = \sum_{j=0}^{s-1}\sum_{k=0}^{t-1}2^{j+s * k}e_{i,j+s * k}$

约定称 $e_{i,l}2^l$ 为 $ e_i $的表示中的一项,这一步是将所有的 $ e_{i,l}2^l $ 写成放到 $ st $( $ st=\lambda $)的矩阵中,然后重排求和顺序,如 $ 11=12^0+12^1+02^2+12^3 $ ,我们将其项放到 $ 22 $的矩阵中
$$
\begin{pmatrix}
12^0&12^1\
02^2&12^3\
\end{pmatrix}
$$
然后逐列求和 $ 11=e_i=\sum_{j=0}^1\sum_{k=0}^1 2^{j+2k}e_{i,j+2k} $;其中 $ e_{i,0}=1,e_{i,1}=1,e_{i,2}=0,e_{i,3}=1 $

即求和顺序为 $ 11=(12^0+02^2)+(12^1+12^3) $

3. $g_i^{e_i}=\prod \limits_{l-0}^{\lambda-1}g_i^{2^le_{i,l}}$

将 $ e_i = \sum_{l=0}^{\lambda-1}e_{i,l}2^l$代入$g_i^{e_i} $ 得 $ g_…

Replies: 1 comment

Comment options

You must be logged in to vote
0 replies
Answer selected by luckyyang
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
2 participants