forked from hDluffy/GPEN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalign_faces.py
executable file
·266 lines (217 loc) · 8.78 KB
/
align_faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 24 15:43:29 2017
@author: zhaoy
"""
"""
@Modified by yangxy ([email protected])
"""
import cv2
import numpy as np
from skimage import transform as trans
# reference facial points, a list of coordinates (x,y)
REFERENCE_FACIAL_POINTS = [
[30.29459953, 51.69630051],
[65.53179932, 51.50139999],
[48.02519989, 71.73660278],
[33.54930115, 92.3655014],
[62.72990036, 92.20410156]
]
DEFAULT_CROP_SIZE = (96, 112)
def _umeyama(src, dst, estimate_scale=True, scale=1.0):
"""Estimate N-D similarity transformation with or without scaling.
Parameters
----------
src : (M, N) array
Source coordinates.
dst : (M, N) array
Destination coordinates.
estimate_scale : bool
Whether to estimate scaling factor.
Returns
-------
T : (N + 1, N + 1)
The homogeneous similarity transformation matrix. The matrix contains
NaN values only if the problem is not well-conditioned.
References
----------
.. [1] "Least-squares estimation of transformation parameters between two
point patterns", Shinji Umeyama, PAMI 1991, :DOI:`10.1109/34.88573`
"""
num = src.shape[0]
dim = src.shape[1]
# Compute mean of src and dst.
src_mean = src.mean(axis=0)
dst_mean = dst.mean(axis=0)
# Subtract mean from src and dst.
src_demean = src - src_mean
dst_demean = dst - dst_mean
# Eq. (38).
A = dst_demean.T @ src_demean / num
# Eq. (39).
d = np.ones((dim,), dtype=np.double)
if np.linalg.det(A) < 0:
d[dim - 1] = -1
T = np.eye(dim + 1, dtype=np.double)
U, S, V = np.linalg.svd(A)
# Eq. (40) and (43).
rank = np.linalg.matrix_rank(A)
if rank == 0:
return np.nan * T
elif rank == dim - 1:
if np.linalg.det(U) * np.linalg.det(V) > 0:
T[:dim, :dim] = U @ V
else:
s = d[dim - 1]
d[dim - 1] = -1
T[:dim, :dim] = U @ np.diag(d) @ V
d[dim - 1] = s
else:
T[:dim, :dim] = U @ np.diag(d) @ V
if estimate_scale:
# Eq. (41) and (42).
scale = 1.0 / src_demean.var(axis=0).sum() * (S @ d)
else:
scale = scale
T[:dim, dim] = dst_mean - scale * (T[:dim, :dim] @ src_mean.T)
T[:dim, :dim] *= scale
return T, scale
class FaceWarpException(Exception):
def __str__(self):
return 'In File {}:{}'.format(
__file__, super.__str__(self))
def get_reference_facial_points(output_size=None,
inner_padding_factor=0.0,
outer_padding=(0, 0),
default_square=False):
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
# 0) make the inner region a square
if default_square:
size_diff = max(tmp_crop_size) - tmp_crop_size
tmp_5pts += size_diff / 2
tmp_crop_size += size_diff
if (output_size and
output_size[0] == tmp_crop_size[0] and
output_size[1] == tmp_crop_size[1]):
print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size))
return tmp_5pts
if (inner_padding_factor == 0 and
outer_padding == (0, 0)):
if output_size is None:
print('No paddings to do: return default reference points')
return tmp_5pts
else:
raise FaceWarpException(
'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
# check output size
if not (0 <= inner_padding_factor <= 1.0):
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0)
and output_size is None):
output_size = tmp_crop_size * \
(1 + inner_padding_factor * 2).astype(np.int32)
output_size += np.array(outer_padding)
print(' deduced from paddings, output_size = ', output_size)
if not (outer_padding[0] < output_size[0]
and outer_padding[1] < output_size[1]):
raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
'and outer_padding[1] < output_size[1])')
# 1) pad the inner region according inner_padding_factor
# print('---> STEP1: pad the inner region according inner_padding_factor')
if inner_padding_factor > 0:
size_diff = tmp_crop_size * inner_padding_factor * 2
tmp_5pts += size_diff / 2
tmp_crop_size += np.round(size_diff).astype(np.int32)
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# 2) resize the padded inner region
# print('---> STEP2: resize the padded inner region')
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
# print(' crop_size = ', tmp_crop_size)
# print(' size_bf_outer_pad = ', size_bf_outer_pad)
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
raise FaceWarpException('Must have (output_size - outer_padding)'
'= some_scale * (crop_size * (1.0 + inner_padding_factor)')
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
# print(' resize scale_factor = ', scale_factor)
tmp_5pts = tmp_5pts * scale_factor
# size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
# tmp_5pts = tmp_5pts + size_diff / 2
tmp_crop_size = size_bf_outer_pad
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# 3) add outer_padding to make output_size
reference_5point = tmp_5pts + np.array(outer_padding)
tmp_crop_size = output_size
# print('---> STEP3: add outer_padding to make output_size')
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
#
# print('===> end get_reference_facial_points\n')
return reference_5point
def get_affine_transform_matrix(src_pts, dst_pts):
tfm = np.float32([[1, 0, 0], [0, 1, 0]])
n_pts = src_pts.shape[0]
ones = np.ones((n_pts, 1), src_pts.dtype)
src_pts_ = np.hstack([src_pts, ones])
dst_pts_ = np.hstack([dst_pts, ones])
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
if rank == 3:
tfm = np.float32([
[A[0, 0], A[1, 0], A[2, 0]],
[A[0, 1], A[1, 1], A[2, 1]]
])
elif rank == 2:
tfm = np.float32([
[A[0, 0], A[1, 0], 0],
[A[0, 1], A[1, 1], 0]
])
return tfm
def warp_and_crop_face(src_img,
facial_pts,
reference_pts=None,
crop_size=(96, 112),
align_type='smilarity'): #smilarity cv2_affine affine
if reference_pts is None:
if crop_size[0] == 96 and crop_size[1] == 112:
reference_pts = REFERENCE_FACIAL_POINTS
else:
default_square = False
inner_padding_factor = 0
outer_padding = (0, 0)
output_size = crop_size
reference_pts = get_reference_facial_points(output_size,
inner_padding_factor,
outer_padding,
default_square)
ref_pts = np.float32(reference_pts)
ref_pts_shp = ref_pts.shape
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
raise FaceWarpException(
'reference_pts.shape must be (K,2) or (2,K) and K>2')
if ref_pts_shp[0] == 2:
ref_pts = ref_pts.T
src_pts = np.float32(facial_pts)
src_pts_shp = src_pts.shape
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
raise FaceWarpException(
'facial_pts.shape must be (K,2) or (2,K) and K>2')
if src_pts_shp[0] == 2:
src_pts = src_pts.T
if src_pts.shape != ref_pts.shape:
raise FaceWarpException(
'facial_pts and reference_pts must have the same shape')
if align_type is 'cv2_affine':
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
tfm_inv = cv2.getAffineTransform(ref_pts[0:3], src_pts[0:3])
elif align_type is 'affine':
tfm = get_affine_transform_matrix(src_pts, ref_pts)
tfm_inv = get_affine_transform_matrix(ref_pts, src_pts)
else:
params, scale = _umeyama(src_pts, ref_pts)
tfm = params[:2, :]
params, _ = _umeyama(ref_pts, src_pts, False, scale=1.0/scale)
tfm_inv = params[:2, :]
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]), flags=3)
return face_img, tfm_inv