-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathgeonet_test_flow.py
115 lines (100 loc) · 4.79 KB
/
geonet_test_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from __future__ import division
import tensorflow as tf
import numpy as np
import os
import PIL.Image as pil
import cv2
from geonet_model import *
from data_loader import DataLoader
import sys
sys.path.insert(0, './kitti_eval/flow_tool/')
import flowlib as fl
def test_flow(opt):
##### load testing list #####
with open(opt.dataset_dir + "test_flow.txt", 'r') as f:
test_files = f.readlines()
input_list = []
for seq in test_files:
seq = seq.split(' ')
input_list.append(opt.dataset_dir+seq[0]+'/'+seq[1][:-1])
if not os.path.exists(opt.output_dir):
os.makedirs(opt.output_dir)
##### init #####
# TODO: currently assuming batch_size = 1
assert opt.batch_size == 1
tgt_image_uint8 = tf.placeholder(tf.uint8, [opt.batch_size,
opt.img_height, opt.img_width, 3],
name='tgt_input')
src_image_stack_uint8 = tf.placeholder(tf.uint8, [opt.batch_size,
opt.img_height, opt.img_width, opt.num_source * 3],
name='src_stack_input')
intrinsics = tf.placeholder(tf.float32, [opt.batch_size, 3, 3],
name='intrinsics_input')
loader = DataLoader(opt)
intrinsics_ms = loader.get_multi_scale_intrinsics(intrinsics, opt.num_scales)
# currently assume a sequence is fed and the tgt->src_id flow is computed
src_id = int(opt.num_source // 2)
bs = opt.batch_size
model = GeoNetModel(opt, tgt_image_uint8, src_image_stack_uint8, intrinsics_ms)
fetches = {}
fetches["pred_flow"] = model.fwd_full_flow_pyramid[0][bs*src_id:bs*(src_id+1)]
saver = tf.train.Saver([var for var in tf.model_variables()])
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
##### Go! #####
output_file = opt.output_dir + '/' + os.path.basename(opt.init_ckpt_file)
if not os.path.exists(output_file):
os.makedirs(output_file)
binary_dir = os.path.join(output_file, 'binary')
color_dir = os.path.join(output_file, 'color')
png_dir = os.path.join(output_file, 'png')
if (not os.path.exists(binary_dir)):
os.makedirs(binary_dir)
if (not os.path.exists(color_dir)):
os.makedirs(color_dir)
if (not os.path.exists(png_dir)):
os.makedirs(png_dir)
with tf.Session(config=config) as sess:
saver.restore(sess, opt.init_ckpt_file)
pred_all = []
img_num = len(input_list)
for tgt_idx in range(img_num):
if (tgt_idx+1) % 100 == 0:
print('processing: %d/%d' % (tgt_idx+1, img_num))
image_seq = cv2.imread(input_list[tgt_idx]+'.jpg')
tgt_image, src_image_stack = unpack_image_sequence(image_seq,
opt.img_height, opt.img_width, opt.num_source)
with open(input_list[tgt_idx]+'_cam.txt', 'r') as cf:
cam_file = cf.readlines()
cam_file = cam_file[0].split(',')
cam_file = np.array([float(d) for d in cam_file])
cam_file = np.reshape(cam_file, (3,3))
pred = sess.run(fetches, feed_dict={tgt_image_uint8: tgt_image[None, :, :, :],
src_image_stack_uint8: src_image_stack[None, :, :, :],
intrinsics: cam_file[None,:,:]})
pred_flow=pred['pred_flow'][0]
# save flow
flow_fn = '%.6d.png' % tgt_idx
color_fn = os.path.join(color_dir, flow_fn)
color_flow = fl.flow_to_image(pred_flow)
color_flow = cv2.cvtColor(color_flow, cv2.COLOR_RGB2BGR)
color_flow = cv2.imwrite(color_fn, color_flow)
png_fn = os.path.join(png_dir, flow_fn)
mask_blob = np.ones((opt.img_height, opt.img_width), dtype = np.uint16)
fl.write_kitti_png_file(png_fn, pred_flow, mask_blob)
binary_fn = flow_fn.replace('.png', '.flo')
binary_fn = os.path.join(binary_dir, binary_fn)
fl.write_flow(pred_flow, binary_fn)
def unpack_image_sequence(image_seq, img_height, img_width, num_source):
# Assuming the center image is the target frame
half_seq_width = int(img_width * (num_source//2))
tgt_image = image_seq[:, half_seq_width:half_seq_width+img_width, :]
# Source frames before the target frame
src_image_1 = image_seq[:, :half_seq_width, :]
# Source frames after the target frame
src_image_2 = image_seq[:, half_seq_width+img_width:, :]
src_image_seq = np.hstack((src_image_1, src_image_2))
# Stack source frames along the color channels (i.e. [H, W, N*3]
src_image_stack = np.dstack([src_image_seq[:,i*img_width:(i+1)*img_width,:] \
for i in range(num_source)])
return tgt_image, src_image_stack