-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
184 lines (154 loc) · 5.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import sys
import argparse
import yaml
import torch
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
from trainer import SynthesisTask
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--config_path", default="workspace/config", type=str)
parser.add_argument("--gpus", type=str, default="0,1")
parser.add_argument("--port", type=str, default="12345")
args = parser.parse_args()
# Load config yaml file and pre-process params
# merge params_default.yaml | params_{dataset}.yaml | extra_config
default_config_path = os.path.join(args.config_path, "params_default.yaml")
with open(default_config_path, "r") as f:
config = yaml.safe_load(f)
with open(os.path.join(args.config_path, "params_coco.yaml"), "r") as f:
dataset_specific_config = yaml.safe_load(f)
config.update(dataset_specific_config)
# Pre-process args
config["lr.decay_steps"] = [int(s) for s in str(config["lr.decay_steps"]).split(",")]
config["current_epoch"] = 0
# Config gpu
if args.gpus == "all":
world_size = torch.cuda.device_count()
else:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
world_size = len(str(args.gpus).split(","))
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = args.port
# initialize the process group
torch.cuda.set_device(rank)
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def txt_to_list(split_path):
filename = []
with open(split_path, "r") as f:
while True:
line = f.readline()
if not line:
break
filename.append(line)
return filename
def get_dataset_dist(config, logger, rank, world_size):
# Init data loader
if config["data.name"] == 'coco':
from warpback.coco_dataset import COCODataset
# train dataset & dataloader
train_dataset = COCODataset(
data_root=config['data.training_set_path'],
depth_root=config['data.training_depth_path'],
height=config['data.img_h'],
width=config['data.img_w'],
training=True,
ec_weight_dir=config['data.ec_weight_dir'],
rand_trans=config['data.rand_trans'],
trans_range=config['data.trans_range'],
rank=rank,
trans_sign=config.get("data.trans_sign", [1, -1]),
)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=rank,
shuffle=True,
)
train_data_loader = DataLoader(
train_dataset,
batch_size=config["data.per_gpu_batch_size"],
drop_last=True,
num_workers=0,
sampler=train_sampler,
collate_fn=train_dataset.collate_fn,
)
# val dataset & dataloader
val_dataset = COCODataset(
data_root=config['data.val_set_path'],
depth_root=config['data.val_depth_path'],
height=config['data.img_h'],
width=config['data.img_w'],
training=True,
ec_weight_dir=config['data.ec_weight_dir'],
rand_trans=config['data.rand_trans'],
trans_range=config['data.trans_range'],
rank=rank,
trans_sign=config.get("data.trans_sign", [1, -1])
)
val_collate_fn = val_dataset.collate_fn
val_dataset = torch.utils.data.Subset(val_dataset, indices=list(range(len(val_dataset)))[::5])
val_sampler = torch.utils.data.distributed.DistributedSampler(
val_dataset,
num_replicas=world_size,
rank=rank,
shuffle=True,
)
val_data_loader_dict = {}
val_data_loader_dict["coco"] = DataLoader(
val_dataset,
batch_size=config["data.per_gpu_batch_size"],
sampler=val_sampler,
shuffle=False,
drop_last=True,
num_workers=0,
collate_fn=val_collate_fn,
)
else:
raise NotImplementedError
return train_data_loader, val_data_loader_dict
def train(rank, world_size, config):
setup(rank, world_size)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
# Config logging and tb writer
logger = None
if rank == 0:
import logging
# logging to file and stdout
config["log_file"] = os.path.join(config["local_workspace"], "training.log")
logger = logging.getLogger("mine")
file_handler = logging.FileHandler(config["log_file"])
stream_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("[%(asctime)s %(filename)s] %(message)s")
file_handler.setFormatter(formatter)
stream_handler.setFormatter(formatter)
logger.handlers = [file_handler, stream_handler]
logger.setLevel(logging.INFO)
logger.propagate = False
logger.info("Training config: {}".format(config))
# tensorboard summary_writer
config["tb_writer"] = SummaryWriter(log_dir=config["local_workspace"])
config["logger"] = logger
# Init data loader
train_data_loader, val_data_loader = get_dataset_dist(config, logger, rank, world_size)
synthesis_task = SynthesisTask(rank, config=config, logger=logger)
synthesis_task.train(train_data_loader, val_data_loader)
cleanup()
def main():
# Prepare workspace
workspace = config["local_workspace"]
if not os.path.exists(workspace):
os.makedirs(workspace, exist_ok=True)
with open(os.path.join(workspace, "params.yaml"), "w") as f:
print("Dumping extra config file...")
yaml.dump(config, f)
# Start training
mp.spawn(train, args=(world_size, config), nprocs=world_size, join=True)
if __name__ == "__main__":
main()