-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathdemo.py
111 lines (89 loc) · 3.44 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#-*- coding:utf-8 -*-
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import cv2
import time
import numpy as np
from PIL import Image
from data.config import cfg
from pyramidbox import build_net
from utils.augmentations import to_chw_bgr
parser = argparse.ArgumentParser(description='pyramidbox demo')
parser.add_argument('--save_dir',
type=str, default='tmp/',
help='Directory for detect result')
parser.add_argument('--model',
type=str, default='weights/pyramidbox.pth',
help='trained model')
parser.add_argument('--thresh',
default=0.4, type=float,
help='Final confidence threshold')
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def detect(net, img_path, thresh):
img = Image.open(img_path)
if img.mode == 'L':
img = img.convert('RGB')
img = np.array(img)
height, width, _ = img.shape
max_im_shrink = np.sqrt(
1200 * 1100 / (img.shape[0] * img.shape[1]))
image = cv2.resize(img, None, None, fx=max_im_shrink,
fy=max_im_shrink, interpolation=cv2.INTER_LINEAR)
x = to_chw_bgr(image)
x = x.astype('float32')
x -= cfg.img_mean
x = x[[2, 1, 0], :, :]
#x = x * cfg.scale
x = Variable(torch.from_numpy(x).unsqueeze(0))
if use_cuda:
x = x.cuda()
t1 = time.time()
y = net(x)
detections = y.data
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]])
for i in range(detections.size(1)):
j = 0
while detections[0, i, j, 0] >= thresh:
score = detections[0, i, j, 0]
pt = (detections[0, i, j, 1:] * scale).cpu().numpy().astype(int)
left_up, right_bottom = (pt[0], pt[1]), (pt[2], pt[3])
j += 1
cv2.rectangle(img, left_up, right_bottom, (0, 0, 255), 2)
conf = "{:.2f}".format(score)
text_size, baseline = cv2.getTextSize(
conf, cv2.FONT_HERSHEY_SIMPLEX, 0.3, 1)
p1 = (left_up[0], left_up[1] - text_size[1])
cv2.rectangle(img, (p1[0] - 2 // 2, p1[1] - 2 - baseline),
(p1[0] + text_size[0], p1[1] + text_size[1]), [255, 0, 0], -1)
cv2.putText(img, conf, (p1[0], p1[
1] + baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1, 8)
t2 = time.time()
print('detect:{} timer:{}'.format(img_path, t2 - t1))
cv2.imwrite(os.path.join(args.save_dir, os.path.basename(img_path)), img)
if __name__ == '__main__':
net = build_net('test', cfg.NUM_CLASSES)
net.load_state_dict(torch.load(args.model))
net.eval()
if use_cuda:
net.cuda()
cudnn.benckmark = True
img_path = './img'
img_list = [os.path.join(img_path, x)
for x in os.listdir(img_path) if x.endswith('jpg')]
for path in img_list:
detect(net, path, args.thresh)