forked from yosinski/deep-visualization-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_misc.py
474 lines (390 loc) · 17.6 KB
/
image_misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
#! /usr/bin/env python
import cv2
import numpy as np
import skimage
import skimage.io
from copy import deepcopy
from misc import WithTimer
def norm01(arr):
arr = arr.copy()
arr -= arr.min()
arr /= arr.max() + 1e-10
return arr
def norm01c(arr, center):
'''Maps the input range to [0,1] such that the center value maps to .5'''
arr = arr.copy()
arr -= center
arr /= max(2 * arr.max(), -2 * arr.min()) + 1e-10
arr += .5
assert arr.min() >= 0
assert arr.max() <= 1
return arr
def norm0255(arr):
'''Maps the input range to [0,255] as dtype uint8'''
arr = arr.copy()
arr -= arr.min()
arr *= 255.0 / (arr.max() + 1e-10)
arr = np.array(arr, 'uint8')
return arr
def cv2_read_cap_rgb(cap, saveto = None):
rval, frame = cap.read()
if saveto:
cv2.imwrite(saveto, frame)
if len(frame.shape) == 2:
# Upconvert single channel grayscale to color
frame = frame[:,:,np.newaxis]
if frame.shape[2] == 1:
frame = np.tile(frame, (1,1,3))
if frame.shape[2] > 3:
# Chop off transparency
frame = frame[:,:,:3]
frame = frame[:,:,::-1] # Convert native OpenCV BGR -> RGB
return frame
def cv2_read_file_rgb(filename):
'''Reads an image from file. Always returns (x,y,3)'''
im = cv2.imread(filename)
if len(im.shape) == 2:
# Upconvert single channel grayscale to color
im = im[:,:,np.newaxis]
if im.shape[2] == 1:
im = np.tile(im, (1,1,3))
if im.shape[2] > 3:
# Chop off transparency
im = im[:,:,:3]
im = im[:,:,::-1] # Convert native OpenCV BGR -> RGB
return im
def read_cam_frame(cap, saveto = None):
#frame = np.array(cv2_read_cap_rgb(cap, saveto = saveto), dtype='float32')
frame = cv2_read_cap_rgb(cap, saveto = saveto)
frame = frame[:,::-1,:] # flip L-R for display
frame -= frame.min()
frame = frame * (255.0 / (frame.max() + 1e-6))
return frame
def crop_to_square(frame):
i_size,j_size = frame.shape[0],frame.shape[1]
if j_size > i_size:
# landscape
offset = (j_size - i_size) / 2
return frame[:,offset:offset+i_size,:]
else:
# portrait
offset = (i_size - j_size) / 2
return frame[offset:offset+j_size,:,:]
def cv2_imshow_rgb(window_name, img):
# Convert native OpenCV BGR -> RGB before displaying
cv2.imshow(window_name, img[:,:,::-1])
#cv2.imshow(window_name, img)
def caffe_load_image(filename, color=True, as_uint=False):
'''
Copied from Caffe to simplify potential import problems.
Load an image converting from grayscale or alpha as needed.
Take
filename: string
color: flag for color format. True (default) loads as RGB while False
loads as intensity (if image is already grayscale).
Give
image: an image with type np.float32 in range [0, 1]
of size (H x W x 3) in RGB or
of size (H x W x 1) in grayscale.
'''
with WithTimer('imread', quiet = True):
if as_uint:
img = skimage.io.imread(filename)
else:
img = skimage.img_as_float(skimage.io.imread(filename)).astype(np.float32)
if img.ndim == 2:
img = img[:, :, np.newaxis]
if color:
img = np.tile(img, (1, 1, 3))
elif img.shape[2] == 4:
img = img[:, :, :3]
return img
def get_tiles_height_width(n_tiles, desired_width = None):
'''Get a height x width size that will fit n_tiles tiles.'''
if desired_width == None:
# square
width = int(np.ceil(np.sqrt(n_tiles)))
height = width
else:
assert isinstance(desired_width, int)
width = desired_width
height = int(np.ceil(float(n_tiles) / width))
return height,width
def get_tiles_height_width_ratio(n_tiles, width_ratio = 1.0):
'''Get a height x width size that will fit n_tiles tiles.'''
width = int(np.ceil(np.sqrt(n_tiles * width_ratio)))
return get_tiles_height_width(n_tiles, desired_width = width)
def tile_images_normalize(data, c01 = False, boost_indiv = 0.0, boost_gamma = 1.0, single_tile = False, scale_range = 1.0, neg_pos_colors = None):
data = data.copy()
if single_tile:
# promote 2D image -> 3D batch (01 -> b01) or 3D image -> 4D batch (01c -> b01c OR c01 -> bc01)
data = data[np.newaxis]
if c01:
# Convert bc01 -> b01c
assert len(data.shape) == 4, 'expected bc01 data'
data = data.transpose(0, 2, 3, 1)
if neg_pos_colors:
neg_clr, pos_clr = neg_pos_colors
neg_clr = np.array(neg_clr).reshape((1,3))
pos_clr = np.array(pos_clr).reshape((1,3))
# Keep 0 at 0
data /= max(data.max(), -data.min()) + 1e-10 # Map data to [-1, 1]
#data += .5 * scale_range # now in [0, scale_range]
#assert data.min() >= 0
#assert data.max() <= scale_range
if len(data.shape) == 3:
data = data.reshape(data.shape + (1,))
assert data.shape[3] == 1, 'neg_pos_color only makes sense if color data is not provided (channels should be 1)'
data = np.dot((data > 0) * data, pos_clr) + np.dot((data < 0) * -data, neg_clr)
data -= data.min()
data *= scale_range / (data.max() + 1e-10)
# sqrt-scale (0->0, .1->.3, 1->1)
assert boost_indiv >= 0 and boost_indiv <= 1, 'boost_indiv out of range'
#print 'using boost_indiv:', boost_indiv
if boost_indiv > 0:
if len(data.shape) == 4:
mm = (data.max(-1).max(-1).max(-1) + 1e-10) ** -boost_indiv
else:
mm = (data.max(-1).max(-1) + 1e-10) ** -boost_indiv
data = (data.T * mm).T
if boost_gamma != 1.0:
data = data ** boost_gamma
# Promote single-channel data to 3 channel color
if len(data.shape) == 3:
# b01 -> b01c
data = np.tile(data[:,:,:,np.newaxis], 3)
return data
def tile_images_make_tiles(data, padsize=1, padval=0, hw=None, highlights = None):
if hw:
height,width = hw
else:
height,width = get_tiles_height_width(data.shape[0])
assert height*width >= data.shape[0], '%d rows x %d columns cannot fit %d tiles' % (height, width, data.shape[0])
# First iteration: one-way padding, no highlights
#padding = ((0, width*height - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
#data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# Second iteration: padding with highlights
#padding = ((0, width*height - data.shape[0]), (padsize, padsize), (padsize, padsize)) + ((0, 0),) * (data.ndim - 3)
#print 'tile_images: data min,max =', data.min(), data.max()
#padder = SmartPadder()
##data = np.pad(data, padding, mode=jy_pad_fn)
#data = np.pad(data, padding, mode=padder.pad_function)
#print 'padder.calls =', padder.calls
# Third iteration: two-way padding with highlights
if highlights is not None:
assert len(highlights) == data.shape[0]
padding = ((0, width*height - data.shape[0]), (padsize, padsize), (padsize, padsize)) + ((0, 0),) * (data.ndim - 3)
# First pad with constant vals
try:
len(padval)
except:
padval = tuple((padval,))
assert len(padval) in (1,3), 'padval should be grayscale (len 1) or color (len 3)'
if len(padval) == 1:
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
else:
data = np.pad(data, padding, mode='constant', constant_values=(0, 0))
for cc in (0,1,2):
# Replace 0s with proper color in each channel
data[:padding[0][0], :, :, cc] = padval[cc]
if padding[0][1] > 0:
data[-padding[0][1]:, :, :, cc] = padval[cc]
data[:, :padding[1][0], :, cc] = padval[cc]
if padding[1][1] > 0:
data[:, -padding[1][1]:, :, cc] = padval[cc]
data[:, :, :padding[2][0], cc] = padval[cc]
if padding[2][1] > 0:
data[:, :, -padding[2][1]:, cc] = padval[cc]
if highlights is not None:
# Then highlight if necessary
for ii,highlight in enumerate(highlights):
if highlight is not None:
data[ii,:padding[1][0],:,:] = highlight
if padding[1][1] > 0:
data[ii,-padding[1][1]:,:,:] = highlight
data[ii,:,:padding[2][0],:] = highlight
if padding[2][1] > 0:
data[ii,:,-padding[2][1]:,:] = highlight
# tile the filters into an image
data = data.reshape((height, width) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((height * data.shape[1], width * data.shape[3]) + data.shape[4:])
data = data[0:-padsize, 0:-padsize] # remove excess padding
return (height,width), data
def to_255(vals_01):
'''Convert vals in [0,1] to [0,255]'''
try:
ret = [v*255 for v in vals_01]
if type(vals_01) is tuple:
return tuple(ret)
else:
return ret
except TypeError:
# Not iterable (single int or float)
return vals_01*255
def ensure_uint255_and_resize_to_fit(img, out_max_shape,
shrink_interpolation = cv2.INTER_LINEAR,
grow_interpolation = cv2.INTER_NEAREST):
as_uint255 = ensure_uint255(img)
return resize_to_fit(as_uint255, out_max_shape,
dtype_out = 'uint8',
shrink_interpolation = shrink_interpolation,
grow_interpolation = grow_interpolation)
def ensure_uint255(arr):
'''If data is float, multiply by 255 and convert to uint8. Else leave as uint8.'''
if arr.dtype == 'uint8':
return arr
elif arr.dtype in ('float32', 'float64'):
#print 'extra check...'
#assert arr.max() <= 1.1
return np.array(arr * 255, dtype = 'uint8')
else:
raise Exception('ensure_uint255 expects uint8 or float input but got %s with range [%g,%g,].' % (arr.dtype, arr.min(), arr.max()))
def ensure_float01(arr, dtype_preference = 'float32'):
'''If data is uint, convert to float and divide by 255. Else leave at float.'''
if arr.dtype == 'uint8':
#print 'extra check...'
#assert arr.max() <= 256
return np.array(arr, dtype = dtype_preference) / 255
elif arr.dtype in ('float32', 'float64'):
return arr
else:
raise Exception('ensure_float01 expects uint8 or float input but got %s with range [%g,%g,].' % (arr.dtype, arr.min(), arr.max()))
def resize_to_fit(img, out_max_shape,
dtype_out = None,
shrink_interpolation = cv2.INTER_LINEAR,
grow_interpolation = cv2.INTER_NEAREST):
'''Resizes to fit within out_max_shape. If ratio is different,
returns an image that fits but is smaller along one of the two
dimensions.
If one of the out_max_shape dimensions is None, then use only the other dimension to perform resizing.
Timing info on MBP Retina with OpenBlas:
- conclusion: uint8 is always tied or faster. float64 is slower.
Scaling down:
In [79]: timeit.Timer('resize_to_fit(aa, (200,200))', setup='from caffevis.app import resize_to_fit; import numpy as np; aa = np.array(np.random.uniform(0,255,(1000,1000,3)), dtype="uint8")').timeit(100)
Out[79]: 0.04950380325317383
In [77]: timeit.Timer('resize_to_fit(aa, (200,200))', setup='from caffevis.app import resize_to_fit; import numpy as np; aa = np.array(np.random.uniform(0,255,(1000,1000,3)), dtype="float32")').timeit(100)
Out[77]: 0.049156904220581055
In [76]: timeit.Timer('resize_to_fit(aa, (200,200))', setup='from caffevis.app import resize_to_fit; import numpy as np; aa = np.array(np.random.uniform(0,255,(1000,1000,3)), dtype="float64")').timeit(100)
Out[76]: 0.11808204650878906
Scaling up:
In [68]: timeit.Timer('resize_to_fit(aa, (2000,2000))', setup='from caffevis.app import resize_to_fit; import numpy as np; aa = np.array(np.random.uniform(0,255,(1000,1000,3)), dtype="uint8")').timeit(100)
Out[68]: 0.4357950687408447
In [70]: timeit.Timer('resize_to_fit(aa, (2000,2000))', setup='from caffevis.app import resize_to_fit; import numpy as np; aa = np.array(np.random.uniform(0,255,(1000,1000,3)), dtype="float32")').timeit(100)
Out[70]: 1.3411099910736084
In [73]: timeit.Timer('resize_to_fit(aa, (2000,2000))', setup='from caffevis.app import resize_to_fit; import numpy as np; aa = np.array(np.random.uniform(0,255,(1000,1000,3)), dtype="float64")').timeit(100)
Out[73]: 2.6078310012817383
'''
if dtype_out is not None and img.dtype != dtype_out:
dtype_in_size = img.dtype.itemsize
dtype_out_size = np.dtype(dtype_out).itemsize
convert_early = (dtype_out_size < dtype_in_size)
convert_late = not convert_early
else:
convert_early = False
convert_late = False
if out_max_shape[0] is None:
scale = float(out_max_shape[1]) / img.shape[1]
elif out_max_shape[1] is None:
scale = float(out_max_shape[0]) / img.shape[0]
else:
scale = min(float(out_max_shape[0]) / img.shape[0],
float(out_max_shape[1]) / img.shape[1])
if convert_early:
img = np.array(img, dtype=dtype_out)
out = cv2.resize(img,
(int(img.shape[1] * scale), int(img.shape[0] * scale)), # in (c,r) order
interpolation = grow_interpolation if scale > 1 else shrink_interpolation)
if convert_late:
out = np.array(out, dtype=dtype_out)
return out
class FormattedString(object):
def __init__(self, string, defaults, face=None, fsize=None, clr=None, thick=None, align=None, width=None):
self.string = string
self.face = face if face else defaults['face']
self.fsize = fsize if fsize else defaults['fsize']
self.clr = clr if clr else defaults['clr']
self.thick = thick if thick else defaults['thick']
self.width = width # if None: calculate width automatically
self.align = align if align else defaults.get('align', 'left')
def cv2_typeset_text(data, lines, loc, between = ' ', string_spacing = 0, line_spacing = 0, wrap = False):
'''Typesets mutliple strings on multiple lines of text, where each string may have its own formatting.
Given:
data: as in cv2.putText
loc: as in cv2.putText
lines: list of lists of FormattedString objects, may be modified by this function!
between: what to insert between each string on each line, ala str.join
string_spacing: extra spacing to insert between strings on a line
line_spacing: extra spacing to insert between lines
wrap: if true, wraps words to next line
Returns:
locy: new y location = loc[1] + y-offset resulting from lines of text
'''
data_width = data.shape[1]
#lines_modified = False
#lines = lines_in # will be deepcopied if modification is needed later
if isinstance(lines, FormattedString):
lines = [lines]
assert isinstance(lines, list), 'lines must be a list of lines or list of FormattedString objects or a single FormattedString object'
if len(lines) == 0:
return loc[1]
if not isinstance(lines[0], list):
# If a single line of text is given as a list of strings, convert to multiline format
lines = [lines]
locy = loc[1]
line_num = 0
while line_num < len(lines):
line = lines[line_num]
maxy = 0
locx = loc[0]
for ii,fs in enumerate(line):
last_on_line = (ii == len(line) - 1)
if not last_on_line:
fs.string += between
boxsize, _ = cv2.getTextSize(fs.string, fs.face, fs.fsize, fs.thick)
if fs.width is not None:
if fs.align == 'right':
locx += fs.width - boxsize[0]
elif fs.align == 'center':
locx += (fs.width - boxsize[0])/2
#print 'right boundary is', locx + boxsize[0], '(%s)' % fs.string
# print 'HERE'
right_edge = locx + boxsize[0]
if wrap and ii > 0 and right_edge > data_width:
# Wrap rest of line to the next line
#if not lines_modified:
# lines = deepcopy(lines_in)
# lines_modified = True
new_this_line = line[:ii]
new_next_line = line[ii:]
lines[line_num] = new_this_line
lines.insert(line_num+1, new_next_line)
break
###line_num += 1
###continue
cv2.putText(data, fs.string, (locx,locy), fs.face, fs.fsize, fs.clr, fs.thick)
maxy = max(maxy, boxsize[1])
if fs.width is not None:
if fs.align == 'right':
locx += boxsize[0]
elif fs.align == 'left':
locx += fs.width
elif fs.align == 'center':
locx += fs.width - (fs.width - boxsize[0])/2
else:
locx += boxsize[0]
locx += string_spacing
line_num += 1
locy += maxy + line_spacing
return locy
def saveimage(filename, im):
'''Saves an image with pixel values in [0,1]'''
#matplotlib.image.imsave(filename, im)
if len(im.shape) == 3:
# Reverse RGB to OpenCV BGR order for color images
cv2.imwrite(filename, 255*im[:,:,::-1])
else:
cv2.imwrite(filename, 255*im)
def saveimagesc(filename, im):
saveimage(filename, norm01(im))
def saveimagescc(filename, im, center):
saveimage(filename, norm01c(im, center))