-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspacy_ltp.py
404 lines (341 loc) · 14.4 KB
/
spacy_ltp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# -*- coding: utf-8 -*-
import warnings
from typing import Dict, Optional
from ltp import LTP, StnSplit
from spacy import blank, Language
from spacy.tokens import Doc
from spacy.util import registry
DEFAULT_TASKS = ('cws', 'pos', 'dep', 'ner')
def load_pipeline(
pretrained_model_name_or_path: str,
*,
force_download: bool = False,
resume_download: bool = False,
proxies: Dict = None,
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
local_files_only: bool = False,
**kwargs) -> Language:
"""Create a blank nlp object for a given language code with a ltp
pipeline as part of the tokenizer. To use the default ltp pipeline with
the same language code, leave the tokenizer config empty. Otherwise, pass
in the ltp pipeline settings in config['nlp']['tokenizer'].
name (str): The language code, e.g. 'en' or 'zh'.
Parameters
----------
pretrained_model_name_or_path: `str` or `os.PathLike`
Can be either:
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model
ids are [`LTP/tiny`, `LTP/small`, `LTP/base`, `LTP/base1`, `LTP/base1`, `LTP/legacy`], the legacy model
only support cws, pos and ner, but more fast.
- You can add `revision` by appending `@` at the end of model_id simply like this:
`dbmdz/bert-base-german-cased@main` Revision is the specific model version to use. It can be a branch
name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts
on huggingface.co, so `revision` can be any identifier allowed by git.
- A path to a `directory` containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- `None` if you are both providing the configuration and state dictionary (resp. with keyword arguments
`config` and `state_dict`).
force_download: bool
Whether to force the (re-)download of the model weights and configuration files, overriding the cached versions
if they exist.
resume_download: bool
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
proxies: Dict[str, str]
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
use_auth_token: str or bool
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when
running `transformers-cli login` (stored in `~/.huggingface`).
cache_dir: str, os.PathLike
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
local_files_only: bool
Whether to only look at local files (i.e., do not try to download the model).
kwargs: Dict
model_kwargs will be passed to the model during initialization
Returns
-------
Language
"""
# Create an empty config skeleton
config = {'nlp': {'tokenizer': {'kwargs': {}}}}
# Set the ltp tokenizer
config['nlp']['tokenizer']['@tokenizers'] = 'spacy_ltp.PipelineAsTokenizer.v1'
# Set the ltp options
config['nlp']['tokenizer']['pretrained_model_name_or_path'] = pretrained_model_name_or_path
config['nlp']['tokenizer']['force_download'] = force_download
config['nlp']['tokenizer']['resume_download'] = resume_download
config['nlp']['tokenizer']['proxies'] = proxies
config['nlp']['tokenizer']['use_auth_token'] = use_auth_token
config['nlp']['tokenizer']['cache_dir'] = cache_dir
config['nlp']['tokenizer']['local_files_only'] = local_files_only
config['nlp']['tokenizer']['kwargs'].update(kwargs)
# hard code only for chinese
return blank('zh', config=config)
@registry.tokenizers('spacy_ltp.PipelineAsTokenizer.v1')
def create_tokenizer(
pretrained_model_name_or_path='LTP/small',
force_download: bool = False,
resume_download: bool = False,
proxies: Dict = None,
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
def tokenizer_factory(
nlp,
pretrained_model_name_or_path=pretrained_model_name_or_path,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
local_files_only=local_files_only,
**kwargs
) -> LtpTokenizer:
ltp = LTP(pretrained_model_name_or_path=pretrained_model_name_or_path,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
use_auth_token=use_auth_token,
cache_dir=cache_dir,
local_files_only=local_files_only,
**kwargs)
return LtpTokenizer(
ltp,
nlp.vocab,
)
return tokenizer_factory
class LtpTokenizer(object):
"""Because we're only running the ltp pipeline once and don't split
it up into spaCy pipeline components, we'll set all the attributes within
a custom tokenizer.
"""
def __init__(self, ltp, vocab):
"""Initialize the tokenizer.
Parameters
----------
ltp: LTP
The initialized ltp pipeline.
vocab: spacy.vocab.Vocab
The vocabulary to use.
Returns
-------
The custom tokenizer.
"""
self.ltp = ltp
self.vocab = vocab
self.vecs = self._find_embeddings(ltp)
def __call__(self, text):
"""Convert a ltp instance to a spaCy Doc.
Parameters
----------
text: str
The text to process.
Returns
-------
spacy.tokens.Doc, The spaCy Doc object.
"""
if not text:
return Doc(self.vocab)
elif text.isspace():
return Doc(self.vocab, words=[text], spaces=[False])
# remove leading and trailing whitespace
text = text.strip()
sents = StnSplit().split(text)
ltp_doc = self.ltp.pipeline(sents, DEFAULT_TASKS)
ltp_tokens, ltp_heads = self.get_tokens_with_heads(ltp_doc)
token_texts = [token['text'] for token in ltp_tokens]
is_aligned = True
try:
words, spaces = self.get_words_and_spaces(token_texts, text)
except ValueError:
words = token_texts
spaces = [True] * len(words)
is_aligned = False
warnings.warn(
'Due to multiword token expansion or an alignment '
'issue, the original text has been replaced by space-separated '
'expanded tokens.',
stacklevel=4,
)
tags = []
deps = []
heads = []
offset = 0
for i, word in enumerate(words):
if word.isspace() and (
i + offset >= len(ltp_tokens) or word != ltp_tokens[i + offset]['text']
):
# insert a space token
tags.append("SPACE")
deps.append('')
# increment any heads left of this position that point beyond
# this position to the right (already present in heads)
for j in range(0, len(heads)):
if j + heads[j] >= i:
heads[j] += 1
# decrement any heads right of this position that point beyond
# this position to the left (yet to be added from snlp_heads)
for j in range(i + offset, len(ltp_heads)):
if j + ltp_heads[j] < i + offset:
ltp_heads[j] -= 1
# initial space tokens are attached to the following token,
# otherwise attach to the preceding token
if i == 0:
heads.append(1)
else:
heads.append(-1)
offset -= 1
else:
token = ltp_tokens[i + offset]
assert word == token['text']
tags.append(token['pos'])
deps.append(token['dep'])
heads.append(ltp_heads[i + offset])
doc = Doc(
self.vocab,
words=words,
spaces=spaces,
tags=tags,
deps=deps,
heads=[head + i for i, head in enumerate(heads)],
)
ents = set()
offset = 0
for sent_id, sent in enumerate(sents):
for ent_start, ent_end, ent_type in loc_in_seq(ltp_doc['cws'][sent_id], ltp_doc['ner'][sent_id]):
ents.add((ent_start + offset, ent_end + offset, ent_type))
offset += len(sent)
ents = [doc.char_span(ent_start, ent_end, ent_type) for ent_start, ent_end, ent_type in ents]
if not is_aligned or not all(ents):
warnings.warn(
f"Can't set named entities because of multi-word token "
f"expansion or because the character offsets don't map to "
f"valid tokens produced by the ltp tokenizer:\n"
f"Words: {words}\n"
f"Entities: {[(ent_type, ent_text) for ent_type, ent_text in sum(ltp_doc['ner'], start=[])]}",
stacklevel=4,
)
else:
doc.ents = ents
if self.vecs is not None:
doc.user_token_hooks['vector'] = self.token_vector
doc.user_token_hooks['has_vector'] = self.token_has_vector
return doc
def get_tokens_with_heads(self, ltp_doc):
"""Flatten the tokens in the ltp Doc and extract the token indices of the sentence start tokens to set
is_sent_start.
Parameters
----------
ltp_doc: ltp.Document:
The processed ltp doc.
Returns
-------
The tokens (words) and heads (deps)
"""
tokens = []
heads = []
offset = 0
for sent_id, sent_text in enumerate(ltp_doc['cws']):
for token_id, token in enumerate(sent_text):
head = ltp_doc['dep'][sent_id]['head'][token_id]
# Here, we're calculating the absolute token index in the doc,
# then the *relative* index of the head, -1 for zero-indexed
# and if the governor is 0 (root), we leave it at 0
if head:
head = head - len(heads) - 1 + offset
else:
head = 0
heads.append(head)
tokens.append({'text': token,
'pos' : ltp_doc['pos'][sent_id][token_id],
'dep' : ltp_doc['dep'][sent_id]['label'][token_id]})
offset += len(sent_text)
return tokens, heads
def get_words_and_spaces(self, words, text):
if ''.join(''.join(words).split()) != ''.join(text.split()):
raise ValueError('Unable to align mismatched text and words.')
text_words = []
text_spaces = []
text_pos = 0
# normalize words to remove all whitespace tokens
norm_words = [word for word in words if not word.isspace()]
# align words with text
for word in norm_words:
try:
word_start = text[text_pos:].index(word)
except ValueError:
raise ValueError('Unable to align mismatched text and words.')
if word_start > 0:
text_words.append(text[text_pos: text_pos + word_start])
text_spaces.append(False)
text_pos += word_start
text_words.append(word)
text_spaces.append(False)
text_pos += len(word)
if text_pos < len(text) and text[text_pos] == ' ':
text_spaces[-1] = True
text_pos += 1
if text_pos < len(text):
text_words.append(text[text_pos:])
text_spaces.append(False)
return text_words, text_spaces
def token_vector(self, token):
"""Get ltp's pretrained word embedding for given token.
Parameters
----------
token: Token
The token whose embedding will be returned
Returns
-------
np.ndarray, the embedding/vector.
token.vector.size > 0 if ltp pipeline contains a processor with
embeddings, else token.vector.size == 0. A 0-vector (origin) will be returned
when the token doesn't exist in ltp's pretrained embeddings.
"""
unit_id = self.ltp.tokenizer.convert_tokens_to_ids(token)
return self.vecs[unit_id]
def token_has_vector(self, token):
"""Check if the token exists as a unit in ltp's pretrained embeddings.
"""
return self.ltp.tokenizer.convert_tokens_to_ids(token) != self.ltp.tokenizer.unk_token_id
@staticmethod
def _find_embeddings(ltp):
"""Find pretrained word embeddings in any of a LTP's processors.
"""
embs = None
if hasattr(ltp.model.backbone, 'embeddings') and hasattr(ltp.model.backbone.embeddings, 'word_embeddings'):
embs = ltp.model.backbone.embeddings.word_embeddings.weight.detach().cpu().numpy()
return embs
# dummy serialization methods
def to_bytes(self, **kwargs):
return b''
def from_bytes(self, _bytes_data, **kwargs):
return self
def to_disk(self, _path, **kwargs):
return None
def from_disk(self, _path, **kwargs):
return self
def loc_in_seq(segs, ents):
output = []
offset = 0
cur_ent_id = 0
state = []
for seg in segs:
offset += len(seg)
if cur_ent_id == len(ents):
break
ent_type, ent_text = ents[cur_ent_id]
state_ = ''.join(state + [seg])
if state_ == ent_text:
cur_ent_id += 1
state = []
output.append((offset - len(ent_text), offset, ent_type))
continue
if ent_text.startswith(''.join(state_)):
state.append(seg)
return output
__all__ = ['load_pipeline']