Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Problem fix [v2] #13

Open
wants to merge 6 commits into
base: dreamer-torch1.8.2
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions conda_env.yml
Original file line number Diff line number Diff line change
Expand Up @@ -82,9 +82,9 @@ dependencies:
- tensorflow-estimator==2.9.0
- tensorflow-io-gcs-filesystem==0.26.0
- termcolor==1.1.0
- torch==1.8.2+cu111
- torchaudio==0.8.2
- torchvision==0.9.2+cu111
- torch==2.1.0
- torchaudio==2.1.0
- torchvision==0.16.0
- tqdm==4.64.0
- typing-extensions==4.2.0
- urllib3==1.26.9
Expand Down
2 changes: 2 additions & 0 deletions env.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
'humanoid-walk',
'fish-swim',
'acrobot-swingup',
'quadruped-run'
]
CONTROL_SUITE_ACTION_REPEATS = {
'cartpole': 8,
Expand All @@ -41,6 +42,7 @@
'humanoid': 2,
'fish': 2,
'acrobot': 4,
'quadruped': 2
}


Expand Down
20 changes: 10 additions & 10 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@
parser.add_argument('--global-kl-beta', type=float, default=0, metavar='βg', help='Global KL weight (0 to disable)')
parser.add_argument('--free-nats', type=float, default=3, metavar='F', help='Free nats')
parser.add_argument('--bit-depth', type=int, default=5, metavar='B', help='Image bit depth (quantisation)')
parser.add_argument('--model_learning-rate', type=float, default=1e-3, metavar='α', help='Learning rate')
parser.add_argument('--model_learning-rate', type=float, default=6e-4, metavar='α', help='Learning rate')
parser.add_argument('--actor_learning-rate', type=float, default=8e-5, metavar='α', help='Learning rate')
parser.add_argument('--value_learning-rate', type=float, default=8e-5, metavar='α', help='Learning rate')
parser.add_argument(
Expand Down Expand Up @@ -175,7 +175,7 @@
D.append(observation, action, reward, done)
observation = next_observation
t += 1
metrics['steps'].append(t * args.action_repeat + (0 if len(metrics['steps']) == 0 else metrics['steps'][-1]))
metrics['steps'].append(int(t * args.action_repeat) + (0 if len(metrics['steps']) == 0 else metrics['steps'][-1]))
metrics['episodes'].append(s)
print("experience replay buffer is ready")

Expand Down Expand Up @@ -336,8 +336,8 @@ def update_belief_and_act(
losses = []
model_modules = transition_model.modules + encoder.modules + observation_model.modules + reward_model.modules

print("training loop")
for s in tqdm(range(args.collect_interval)):
print("\n training loop")
for s in tqdm(range(1, args.collect_interval + 1)):
# Draw sequence chunks {(o_t, a_t, r_t+1, terminal_t+1)} ~ D uniformly at random from the dataset (including terminal flags)
observations, actions, rewards, nonterminals = D.sample(
args.batch_size, args.chunk_size
Expand Down Expand Up @@ -479,7 +479,7 @@ def update_belief_and_act(
imged_reward = bottle(reward_model, (imged_beliefs, imged_prior_states))
value_pred = bottle(value_model, (imged_beliefs, imged_prior_states))
returns = lambda_return(
imged_reward, value_pred, bootstrap=value_pred[-1], discount=args.discount, lambda_=args.disclam
imged_reward[:-1], value_pred[:-1], bootstrap=value_pred[-1], discount=args.discount, lambda_=args.disclam
)
actor_loss = -torch.mean(returns)
# Update model parameters
Expand All @@ -494,7 +494,7 @@ def update_belief_and_act(
value_prior_states = imged_prior_states.detach()
target_return = returns.detach()
value_dist = Normal(
bottle(value_model, (value_beliefs, value_prior_states)), 1
bottle(value_model, (value_beliefs, value_prior_states))[:-1], 1
) # detach the input tensor from the transition network.
value_loss = -value_dist.log_prob(target_return).mean(dim=(0, 1))
# Update model parameters
Expand Down Expand Up @@ -535,7 +535,7 @@ def update_belief_and_act(
torch.zeros(1, args.state_size, device=args.device),
torch.zeros(1, env.action_size, device=args.device),
)
pbar = tqdm(range(args.max_episode_length // args.action_repeat))
pbar = tqdm(range(1, args.max_episode_length // args.action_repeat + 1))
for t in pbar:
# print("step",t)
belief, posterior_state, action, next_observation, reward, done = update_belief_and_act(
Expand All @@ -560,7 +560,7 @@ def update_belief_and_act(
break

# Update and plot train reward metrics
metrics['steps'].append(t + metrics['steps'][-1])
metrics['steps'].append(int(t * args.action_repeat) + metrics['steps'][-1])
metrics['episodes'].append(episode)
metrics['train_rewards'].append(total_reward)
lineplot(
Expand Down Expand Up @@ -651,7 +651,7 @@ def update_belief_and_act(
test_envs.close()

writer.add_scalar("train_reward", metrics['train_rewards'][-1], metrics['steps'][-1])
writer.add_scalar("train/episode_reward", metrics['train_rewards'][-1], metrics['steps'][-1] * args.action_repeat)
writer.add_scalar("train/episode_reward", metrics['train_rewards'][-1], metrics['steps'][-1])
writer.add_scalar("observation_loss", metrics['observation_loss'][0][-1], metrics['steps'][-1])
writer.add_scalar("reward_loss", metrics['reward_loss'][0][-1], metrics['steps'][-1])
writer.add_scalar("kl_loss", metrics['kl_loss'][0][-1], metrics['steps'][-1])
Expand Down Expand Up @@ -681,7 +681,7 @@ def update_belief_and_act(
)
if args.checkpoint_experience:
torch.save(
D, os.path.join(results_dir, 'experience.pth')
D, os.path.join(results_dir, 'experience.pth'), pickle_protocol=5
) # Warning: will fail with MemoryError with large memory sizes


Expand Down
2 changes: 1 addition & 1 deletion utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def imagine_ahead(prev_state, prev_belief, policy, transition_model, planning_ho
prev_state = flatten(prev_state)

# Create lists for hidden states (cannot use single tensor as buffer because autograd won't work with inplace writes)
T = planning_horizon
T = planning_horizon + 1
beliefs, prior_states, prior_means, prior_std_devs = (
[torch.empty(0)] * T,
[torch.empty(0)] * T,
Expand Down