forked from Simba2017/BERT-MRC-RACE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_segment.py
280 lines (208 loc) · 10.3 KB
/
run_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import logging
import os
import argparse
import random
from tqdm import tqdm, trange
import csv
import glob
import json
from tensorboardX import SummaryWriter
import time
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertConfig
from BertOrigin import args
from Utils.utils import get_device, classifiction_metric
from Utils.race_utils import load_data
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0 - x
def train(epoch_num, n_gpu, train_dataloader, dev_dataloader, model, optimizer, criterion, gradient_accumulation_steps, device, label_list, output_model_file, output_config_file, log_dir, print_step):
model.train()
writer = SummaryWriter(
log_dir=log_dir + '/' + time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime(time.time())))
best_dev_loss = float('inf')
global_step = 0
for epoch in range(int(epoch_num)):
print(f'---------------- Epoch: {epoch+1:02} ----------')
epoch_loss = 0
train_steps = 0
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
logits = model(input_ids, segment_ids, input_mask)
loss = criterion(logits.view(-1, len(label_list)),
label_ids.view(-1))
if n_gpu > 1:
loss = loss.mean()
if gradient_accumulation_steps > 1:
loss = loss / gradient_accumulation_steps
train_steps += 1
# 反向传播
loss.backward()
epoch_loss += loss.item()
preds = logits.detach().cpu().numpy()
outputs = np.argmax(preds, axis=1)
all_preds = np.append(all_preds, outputs)
label_ids = label_ids.to('cpu').numpy()
all_labels = np.append(all_labels, label_ids)
if (step + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
global_step += 1
if global_step != 0 and global_step % print_step == 0:
train_loss = epoch_loss / train_steps
train_acc, train_report = classifiction_metric(
all_preds, all_labels, label_list)
dev_loss, dev_acc, dev_report = evaluate(
model, dev_dataloader, criterion, device, label_list)
c = global_step // print_step
writer.add_scalar("loss/train", train_loss, c)
writer.add_scalar("loss/dev", dev_loss, c)
writer.add_scalar("acc/train", train_acc, c)
writer.add_scalar("acc/dev", dev_acc, c)
for label in label_list:
writer.add_scalar(label + ":" + "f1/train",
train_report[label]['f1-score'], c)
writer.add_scalar(label + ":" + "f1/dev",
dev_report[label]['f1-score'], c)
print_list = ['macro avg', 'weighted avg']
for label in print_list:
writer.add_scalar(label + ":" + "f1/train",
train_report[label]['f1-score'], c)
writer.add_scalar(label + ":" + "f1/dev",
dev_report[label]['f1-score'], c)
if dev_loss < best_dev_loss:
best_dev_loss = dev_loss
model_to_save = model.module if hasattr(
model, 'module') else model
torch.save(model_to_save.state_dict(), output_model_file)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
writer.close()
def evaluate(model, dataloader, criterion, device, label_list):
model.eval()
epoch_loss = 0
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
for batch in tqdm(dataloader, desc="Eval"):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask, labels=None)
loss = criterion(logits.view(-1, len(label_list)), label_ids.view(-1))
preds = logits.detach().cpu().numpy()
outputs = np.argmax(preds, axis=1)
all_preds = np.append(all_preds, outputs)
label_ids = label_ids.to('cpu').numpy()
all_labels = np.append(all_labels, label_ids)
epoch_loss += loss.mean().item()
acc, report = classifiction_metric(all_preds, all_labels, label_list)
return epoch_loss/len(dataloader), acc, report
def main(config, bert_vocab_file, bert_model_dir):
if not os.path.exists(config.output_dir):
os.makedirs(config.output_dir)
if not os.path.exists(config.cache_dir):
os.makedirs(config.cache_dir)
output_model_file = os.path.join(
config.output_dir, config.weights_name) # 模型输出文件
output_config_file = os.path.join(config.output_dir, config.config_name)
# 设备准备
gpu_ids = [int(device_id) for device_id in config.gpu_ids.split()]
device, n_gpu = get_device(gpu_ids[0])
if n_gpu > 1:
n_gpu = len(gpu_ids)
config.train_batch_size = config.train_batch_size // config.gradient_accumulation_steps
""" 设定随机种子 """
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(config.seed)
tokenizer = BertTokenizer.from_pretrained(
bert_vocab_file, do_lower_case=config.do_lower_case)
label_list = ["0", "1", "2", "3"]
if config.do_train:
# 数据准备
train_file = os.path.join(config.data_dir, "train.json")
dev_file = os.path.join(config.data_dir, "dev.json")
train_dataloader, train_len = load_data(
train_file, tokenizer, config.max_seq_length, config.train_batch_size)
dev_dataloader, dev_len = load_data(
dev_file, tokenizer, config.max_seq_length, config.dev_batch_size)
num_train_steps = int(
train_len / config.train_batch_size / config.gradient_accumulation_steps * config.num_train_epochs)
# 模型准备
if config.model_name == "BertOrigin":
from BertOrigin.BertOrigin import BertOrigin
model = BertOrigin.from_pretrained(
bert_model_dir,
cache_dir=config.cache_dir, num_choices=4)
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=gpu_ids)
# 优化器准备
param_optimizer = list(model.named_parameters())
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=config.learning_rate,
warmup=config.warmup_proportion,
t_total=num_train_steps)
criterion = nn.CrossEntropyLoss()
criterion = criterion.to(device)
train(config.num_train_epochs, n_gpu, train_dataloader, dev_dataloader, model, optimizer, criterion,
config.gradient_accumulation_steps, device, label_list, output_model_file, output_config_file, config.log_dir, config.print_step)
test_file = os.path.join(config.data_dir, "test.json")
test_dataloader, _ = load_data(
test_file, tokenizer, config.max_seq_length, config.test_batch_size)
bert_config = BertConfig(output_config_file)
if config.model_name == "BertOrigin":
from BertOrigin.BertOrigin import BertOrigin
model = BertOrigin(bert_config, num_choices=len(label_list))
model.load_state_dict(torch.load(output_model_file))
model.to(device)
""" 损失函数准备 """
criterion = nn.CrossEntropyLoss()
criterion = criterion.to(device)
test_loss, test_acc, test_report = evaluate(
model, test_dataloader, criterion, device, label_list)
print("-------------- Test -------------")
print(f'\t Loss: {test_loss: .3f} | Acc: {test_acc*100: .3f} %')
for label in label_list:
print('\t {}: Precision: {} | recall: {} | f1 score: {}'.format(
label, test_report[label]['precision'], test_report[label]['recall'], test_report[label]['f1-score']))
print_list = ['macro avg', 'weighted avg']
for label in print_list:
print('\t {}: Precision: {} | recall: {} | f1 score: {}'.format(
label, test_report[label]['precision'], test_report[label]['recall'], test_report[label]['f1-score']))
if __name__ == "__main__":
model_name = "BertSegment"
data_dir = "/search/hadoop02/suanfa/songyingxin/data/RACE/all/segment/400"
output_dir = ".BertSegment_output"
cache_dir = ".BertSegment_cache"
log_dir = ".BertSegment_log"
# bert-base
bert_vocab_file = "/search/hadoop02/suanfa/songyingxin/pytorch_Bert/bert-base-uncased-vocab.txt"
bert_model_dir = "/search/hadoop02/suanfa/songyingxin/pytorch_Bert/bert-base-uncased"
# bert_vocab_file = "/search/hadoop02/suanfa/songyingxin/pytorch_Bert/bert-large-uncased-vocab.txt"
# bert_model_dir = "/search/hadoop02/suanfa/songyingxin/pytorch_Bert/bert-large-uncased"
if model_name == "BertSegment":
from BertSegment import args
main(args.get_args(data_dir, output_dir, cache_dir,
log_dir), bert_vocab_file, bert_model_dir)