-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
234 lines (195 loc) · 9.63 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Common
from dataset.test_dataset import TestDataset
from network.minkUnet import MinkUNet34
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.nn as nn
import torch
from tqdm import tqdm
import numpy as np
import argparse
import warnings
import logging
import yaml
import os
import MinkowskiEngine as ME
# config file
from configs.config_base import cfg_from_yaml_file
from easydict import EasyDict
'''
预测结果 softmax 然后累加起来
'''
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# trained_model/2021-7-09-16_42/checkpoint_val_Spfuion.tar
np.random.seed(0)
warnings.filterwarnings("ignore")
# ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path',
default='preTraModel/Syn2Nusc/SynLiDAR2SK_M34_XYZ_AdvMask/2023-10-24-09_07/checkpoint_epoch_10.tar',
help='Model checkpoint path [default: None]')
parser.add_argument('--infer_mode', default='test', type=str,
help='Predicted sequence id [gen_pselab | test]')
parser.add_argument('--result_dir', default='res_pred/syn2nusc/SynLiDAR2SK_M34_XYZ_AdvMask_Epoch10/',
help='Dump dir to save prediction [default: result/]')
parser.add_argument('--only_pred', default=1, type=int,
help='0---> predictions and probs | 1--> only predictions')
parser.add_argument('--batch_size', type=int, default=8,
help='Batch Size during training [default: 30]')
parser.add_argument('--index_to_label', action='store_true', default=False,
help='Set index-to-label flag when inference / Do not set it on seq 08')
parser.add_argument('--num_workers', type=int, default=4,
help='Number of workers [default: 5]')
parser.add_argument('--num_classes', type=int, default=14,
help='Number of workers [default: 5]')
parser.add_argument('--domain', type=str, default='target',
help='which domain of the present inference dataset.',)
parser.add_argument(
'--cfg',
dest='config_file',
default='configs/SynLiDAR2nuScenes/simese_warmUp.yaml',
metavar='FILE',
help='path to config file',
type=str,
)
FLAGS = parser.parse_args()
cfg = EasyDict()
cfg.OUTPUT_DIR = './workspace/'
cfg_from_yaml_file(FLAGS.config_file, cfg)
cfg.TRAIN.DEBUG = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = True
FLAGS.debug = False
class Tester:
def __init__(self):
# Init Logging
os.makedirs(FLAGS.result_dir, exist_ok=True)
log_fname = os.path.join(FLAGS.result_dir, 'log_test.txt')
LOGGING_FORMAT = '%(asctime)s %(levelname)s: %(message)s'
DATE_FORMAT = '%Y%m%d %H:%M:%S'
logging.basicConfig(level=logging.DEBUG, format=LOGGING_FORMAT,
datefmt=DATE_FORMAT, filename=log_fname)
self.logger = logging.getLogger("Tester")
self.test_dataset = TestDataset(cfg, 'target', 'test') # [gen_pselab | test]
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=FLAGS.batch_size,
num_workers=FLAGS.num_workers,
worker_init_fn=my_worker_init_fn,
collate_fn=self.test_dataset.infer_collate_fn,
pin_memory=True,
shuffle=False,
drop_last=False
)
# Network & Optimizer
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.net = MinkUNet34(cfg.MODEL_G).to(device)
# Load module
CHECKPOINT_PATH = FLAGS.checkpoint_path
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH):
if not os.path.exists(FLAGS.checkpoint_path):
print('No model !!!!')
quit()
print('this is: %s ' % FLAGS.checkpoint_path)
checkpoint = torch.load(CHECKPOINT_PATH)
self.net.load_state_dict(checkpoint['model_state_dict'])
# Multiple GPU Testing
if torch.cuda.device_count() > 1:
self.logger.info("Let's use %d GPUs!" %
(torch.cuda.device_count()))
self.net = nn.DataParallel(self.net)
self.saveed_pred_dir = []
def load_yaml(self, path):
DATA = yaml.safe_load(open(path, 'r'))
# get number of interest classes, and the label mappings
remapdict = DATA["learning_map_inv"]
# make lookup table for mapping
maxkey = max(remapdict.keys())
# +100 hack making lut bigger just in case there are unknown labels
remap_lut = np.zeros((maxkey + 100), dtype=np.int32)
remap_lut[list(remapdict.keys())] = list(remapdict.values())
return remap_lut
def test(self):
self.logger.info("Start Testing")
self.rolling_predict()
# Merge Probability
print('wow done')
def rolling_predict(self):
self.net.eval() # set model to eval mode (for bn and dp)
count = 0
# iter_loader = iter(self.test_dataloader)
tqdm_loader = tqdm(self.test_dataloader,
total=len(self.test_dataloader),
ncols=100, desc='Inference **{}: {}**'.format(FLAGS.domain, cfg.DATASET_TARGET.TYPE))
with torch.no_grad():
# for batch_data in self.tgt_train_loader:
for batch_idx, batch_data in enumerate(tqdm_loader):
for key in batch_data:
batch_data[key] = batch_data[key].cuda(non_blocking=True)
cloud_inds = batch_data['cloud_inds']
# end_points = self.net(batch_data)
val_G_in = ME.SparseTensor(batch_data['feats_mink'], batch_data['coords_mink'])
out_dict = self.net(val_G_in)
# reverse voxels to points
voxel2pc_F = out_dict['sp_out'].F[batch_data['inverse_map']]
# process each scan
pc_temp_count = 0
for scan_i in range(len(cloud_inds)):
pc_i_len = batch_data['s_lens'][scan_i]
vo_i_2_pc = voxel2pc_F[pc_temp_count: pc_temp_count+pc_i_len, :]
soft_pred = F.softmax(vo_i_2_pc, dim=1)
pc_temp_count += pc_i_len
# save prediction
root_dir = os.path.join(FLAGS.result_dir, self.test_dataset.data_list[cloud_inds[scan_i]][0], 'predictions')
if self.test_dataset.data_list[cloud_inds[scan_i]][0] not in self.saveed_pred_dir:
self.saveed_pred_dir.append(self.test_dataset.data_list[0][0])
os.makedirs(root_dir, exist_ok=True)
# vo_prob
vo_dir = os.path.join(FLAGS.result_dir, self.test_dataset.data_list[cloud_inds[scan_i]][0], 'vo_prob')
os.makedirs(vo_dir, exist_ok=True)
pred = np.argmax(soft_pred.cpu().numpy(), 1).astype(np.uint32)
if FLAGS.index_to_label is True:
name = self.test_dataset.data_list[cloud_inds[scan_i]][1] + '.label'
output_path = os.path.join(root_dir, name)
pred.tofile(output_path)
else: # 0 - 19
name = self.test_dataset.data_list[cloud_inds[scan_i]][1] + '.npy'
output_path = os.path.join(root_dir, name)
np.save(output_path, pred)
def main():
tester = Tester()
tester.test()
if __name__ == '__main__':
main()
# vo_temp_count = 0
# pc_temp_count = 0
# for scan_i in range(len(cloud_inds)):
# vo_i_len = voxel2pc.features_at(scan_i).size(0) # voxel len of scan_i
# pc_i_len = end_points['s_lens'][scan_i]
# vo_i = voxel2pc.F[vo_temp_count: vo_temp_count+vo_i_len, :]
# vo_i_inv = end_points['inverse_map'][pc_temp_count: pc_temp_count+pc_i_len]
# vo_i_2_pc = vo_i[vo_i_inv, :]
# soft_pred = F.softmax(vo_i_2_pc, dim=1)
# vo_temp_count += vo_i_len
# pc_temp_count += pc_i_len
# # save prediction
# if self.test_dataset.data_list[cloud_inds[0]][0] not in self.saveed_pred_dir:
# self.saveed_pred_dir.append(self.test_dataset.data_list[0][0])
# root_dir = os.path.join(FLAGS.result_dir, self.test_dataset.data_list[cloud_inds[0]][0], 'predictions')
# os.makedirs(root_dir, exist_ok=True)
# # vo_prob
# vo_dir = os.path.join(FLAGS.result_dir, self.test_dataset.data_list[cloud_inds[0]][0], 'vo_prob')
# os.makedirs(vo_dir, exist_ok=True)
# pred = np.argmax(soft_pred.cpu().numpy(), 1).astype(np.uint32)
# if FLAGS.index_to_label is True:
# name = self.test_dataset.data_list[cloud_inds[0]][1] + '.label'
# output_path = os.path.join(root_dir, name)
# pred.tofile(output_path)
# else: # 0 - 19
# name = self.test_dataset.data_list[cloud_inds[0]][1] + '.npy'
# output_path = os.path.join(root_dir, name)
# np.save(output_path, pred)
# if FLAGS.only_pred == 0:
# output_path_pro = os.path.join(vo_dir, name.replace('.label', '_sp.npy') if 'label' in name else name.replace('.npy', '_sp.npy'))
# np.save(output_path_pro, end_points['sp_logits'].cpu().numpy())