-
Notifications
You must be signed in to change notification settings - Fork 503
/
train.py
58 lines (49 loc) · 2.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from pathlib import Path
import multiprocessing
import pandas as pd
from sklearn.model_selection import train_test_split
import hydra
from hydra.utils import to_absolute_path
import tensorflow as tf
from tensorflow.keras.callbacks import LearningRateScheduler, ModelCheckpoint
from src.factory import get_model, get_optimizer, get_scheduler
from src.generator import ImageSequence
@hydra.main(config_path="src/config.yaml")
def main(cfg):
if cfg.wandb.project:
import wandb
from wandb.keras import WandbCallback
wandb.init(project=cfg.wandb.project)
callbacks = [WandbCallback()]
else:
callbacks = []
csv_path = Path(to_absolute_path(__file__)).parent.joinpath("meta", f"{cfg.data.db}.csv")
df = pd.read_csv(str(csv_path))
train, val = train_test_split(df, random_state=42, test_size=0.1)
train_gen = ImageSequence(cfg, train, "train")
val_gen = ImageSequence(cfg, val, "val")
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = get_model(cfg)
opt = get_optimizer(cfg)
scheduler = get_scheduler(cfg)
model.compile(optimizer=opt,
loss=["sparse_categorical_crossentropy", "sparse_categorical_crossentropy"],
metrics=['accuracy'])
checkpoint_dir = Path(to_absolute_path(__file__)).parent.joinpath("checkpoint")
checkpoint_dir.mkdir(exist_ok=True)
filename = "_".join([cfg.model.model_name,
str(cfg.model.img_size),
"weights.{epoch:02d}-{val_loss:.2f}.hdf5"])
callbacks.extend([
LearningRateScheduler(schedule=scheduler),
ModelCheckpoint(str(checkpoint_dir) + "/" + filename,
monitor="val_loss",
verbose=1,
save_best_only=True,
mode="auto")
])
model.fit(train_gen, epochs=cfg.train.epochs, callbacks=callbacks, validation_data=val_gen,
workers=multiprocessing.cpu_count())
if __name__ == '__main__':
main()