This folder contains UperNet results on top of mmsegmentation.
All model are trained using ImageNet-1K pretrained weight.
Backbone | Method | Crop Size | Lr Schd | mIoU | #params | FLOPs | weight |
---|---|---|---|---|---|---|---|
MPViT-S | UperNet | 512x512 | 160K | 48.3 | 52M | 943G | weight |
MPViT-B | UperNet | 512x512 | 160K | 50.3 | 105M | 1185G | weight |
We test all models using pytorch==1.7.0
mmcv-full==1.3.0
mmseg==0.11.0
cuda==10.1
on NVIDIA V100 GPUs.
Install the mmsegmentation library.
pip install mmcv-full==1.3.0 mmsegmentation==0.11.0
Please refer to the datasets guide of mmseg to prepare the ADE20K dataset.
For more details, please refer to the guide of mmseg.
tools/dist_test.sh <CONFIG_PATH> <CHECKPOINT_PATH or URL> <NUM_GPUS> --eval mIoU
For UperNet with MPViT-Small
backbone:
tools/dist_test.sh configs/mpvit/upernet/upernet_mpvit_small_160k_ade20k.py https://dl.dropbox.com/s/5opqzboalok7lme/upernet_mpvit_small.pth 8 --eval mIoU
This should give the following result:
+--------+-------+-------+-------+
| Scope | mIoU | mAcc | aAcc |
+--------+-------+-------+-------+
| global | 48.25 | 60.56 | 82.43 |
+--------+-------+-------+-------+
For UperNet with MPViT-Base
backbone:
tools/dist_test.sh configs/mpvit/upernet/upernet_mpvit_base_160k_ade20k.py https://dl.dropbox.com/s/shr88fojdcqvhpr/upernet_mpvit_base.pth 8 --eval mIoU
This should give the following result:
+--------+-------+-------+-------+
| Scope | mIoU | mAcc | aAcc |
+--------+-------+-------+-------+
| global | 50.26 | 62.18 | 83.55 |
+--------+-------+-------+-------+
For more details, please refer to the guide of mmseg.
./tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS>
For UperNet with MPViT-Small
backbone:
./tools/dist_train.sh configs/mpvit/upernet/upernet_mpvit_small_160k_ade20k.py 8
For UperNet with MPViT-Base
backbone:
./tools/dist_train.sh configs/mpvit/upernet/upernet_mpvit_base_160k_ade20k.py 8
Thanks to mmsegmentation for the UperNet implementation. We follow the optimization hyperparameters from Swin Transformer and XCiT repositories.